File size: 2,001 Bytes
d52107c
ae29766
f134f2a
d52107c
 
 
 
 
ae29766
d52107c
ae29766
d52107c
adf8be0
d52107c
 
 
 
 
ae29766
d52107c
ae29766
d52107c
ae29766
d52107c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adf8be0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
language:
- en
license: mit
base_model: microsoft/speecht5_tts
tags:
- generated_from_trainer
datasets:
- facebook/voxpopuli
model-index:
- name: T5 TTS finetuned on accented english - b-koopman
  results: []
pipeline_tag: text-to-speech
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# T5 TTS finetuned on accented english - b-koopman

This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the facebook/voxpopuli dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4800

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 1000

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.632         | 1.05  | 100  | 0.5855          |
| 0.6262        | 2.11  | 200  | 0.5622          |
| 0.5991        | 3.16  | 300  | 0.5442          |
| 0.562         | 4.22  | 400  | 0.5110          |
| 0.5345        | 5.27  | 500  | 0.4929          |
| 0.5204        | 6.32  | 600  | 0.4888          |
| 0.5249        | 7.38  | 700  | 0.4835          |
| 0.5189        | 8.43  | 800  | 0.4812          |
| 0.5116        | 9.49  | 900  | 0.4798          |
| 0.5157        | 10.54 | 1000 | 0.4804          |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3