--- license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer datasets: - common_voice_17_0 metrics: - wer model-index: - name: xlsr-128upper-sorbian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_17_0 type: common_voice_17_0 config: hsb split: validation args: hsb metrics: - name: Wer type: wer value: 0.5044303797468355 --- [Visualize in Weights & Biases](https://wandb.ai/badr-nlp/xlsr-continual-finetuning-new/runs/0wnfr6i1) # xlsr-128upper-sorbian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.7625 - Wer: 0.5044 - Cer: 0.1106 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-------:|:----:|:---------------:|:------:|:------:| | 3.8489 | 3.9216 | 100 | 4.0479 | 1.0 | 1.0 | | 3.1996 | 7.8431 | 200 | 3.2124 | 0.9804 | 0.9850 | | 2.3527 | 11.7647 | 300 | 2.4026 | 1.0 | 0.6858 | | 0.4424 | 15.6863 | 400 | 0.7917 | 0.7418 | 0.1910 | | 0.2617 | 19.6078 | 500 | 0.7624 | 0.6804 | 0.1696 | | 0.1421 | 23.5294 | 600 | 0.7839 | 0.6582 | 0.1579 | | 0.097 | 27.4510 | 700 | 0.8322 | 0.6316 | 0.1495 | | 0.0459 | 31.3725 | 800 | 0.8119 | 0.6171 | 0.1446 | | 0.0668 | 35.2941 | 900 | 0.8534 | 0.6418 | 0.1535 | | 0.0627 | 39.2157 | 1000 | 0.8256 | 0.6019 | 0.1397 | | 0.0454 | 43.1373 | 1100 | 0.7747 | 0.5994 | 0.1363 | | 0.04 | 47.0588 | 1200 | 0.8046 | 0.5810 | 0.1321 | | 0.0563 | 50.9804 | 1300 | 0.7910 | 0.5797 | 0.1325 | | 0.039 | 54.9020 | 1400 | 0.7370 | 0.5595 | 0.1265 | | 0.0254 | 58.8235 | 1500 | 0.7395 | 0.5418 | 0.1188 | | 0.0211 | 62.7451 | 1600 | 0.7582 | 0.5430 | 0.1209 | | 0.0218 | 66.6667 | 1700 | 0.7123 | 0.5051 | 0.1121 | | 0.0206 | 70.5882 | 1800 | 0.7912 | 0.5297 | 0.1165 | | 0.0155 | 74.5098 | 1900 | 0.7671 | 0.5367 | 0.1183 | | 0.0242 | 78.4314 | 2000 | 0.7926 | 0.5418 | 0.1170 | | 0.0081 | 82.3529 | 2100 | 0.7817 | 0.5373 | 0.1221 | | 0.0087 | 86.2745 | 2200 | 0.7989 | 0.5285 | 0.1165 | | 0.0088 | 90.1961 | 2300 | 0.7523 | 0.5165 | 0.1141 | | 0.0173 | 94.1176 | 2400 | 0.7646 | 0.5038 | 0.1108 | | 0.0217 | 98.0392 | 2500 | 0.7625 | 0.5044 | 0.1106 | ### Framework versions - Transformers 4.42.0.dev0 - Pytorch 2.3.1+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1