baileyarzate
commited on
Commit
•
bc68b74
1
Parent(s):
3a84968
Update README.md
Browse files
README.md
CHANGED
@@ -17,21 +17,17 @@ tags: []
|
|
17 |
|
18 |
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
|
20 |
-
- **Developed by:**
|
21 |
-
- **
|
22 |
-
- **
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:**
|
27 |
|
28 |
### Model Sources [optional]
|
29 |
|
30 |
<!-- Provide the basic links for the model. -->
|
31 |
|
32 |
-
- **Repository:**
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
## Uses
|
37 |
|
@@ -69,46 +65,110 @@ Users (both direct and downstream) should be made aware of the risks, biases and
|
|
69 |
|
70 |
## How to Get Started with the Model
|
71 |
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
## Training Details
|
77 |
|
78 |
### Training Data
|
79 |
|
80 |
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
|
|
|
|
|
|
81 |
|
82 |
[More Information Needed]
|
83 |
|
84 |
### Training Procedure
|
85 |
|
86 |
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
|
|
87 |
|
88 |
#### Preprocessing [optional]
|
89 |
|
90 |
-
|
91 |
|
92 |
|
93 |
#### Training Hyperparameters
|
94 |
|
95 |
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
#### Speeds, Sizes, Times [optional]
|
98 |
|
99 |
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
|
|
100 |
|
101 |
-
[More Information Needed]
|
102 |
|
103 |
## Evaluation
|
104 |
|
105 |
<!-- This section describes the evaluation protocols and provides the results. -->
|
|
|
106 |
|
107 |
### Testing Data, Factors & Metrics
|
108 |
|
109 |
#### Testing Data
|
110 |
|
111 |
<!-- This should link to a Dataset Card if possible. -->
|
|
|
|
|
|
|
112 |
|
113 |
[More Information Needed]
|
114 |
|
@@ -122,33 +182,30 @@ Use the code below to get started with the model.
|
|
122 |
|
123 |
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
|
125 |
-
|
|
|
126 |
|
127 |
### Results
|
128 |
|
129 |
-
|
|
|
130 |
|
131 |
#### Summary
|
132 |
|
|
|
133 |
|
134 |
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
## Environmental Impact
|
142 |
|
143 |
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
|
145 |
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
|
147 |
-
- **Hardware Type:**
|
148 |
-
- **Hours used:**
|
149 |
-
- **Cloud Provider:**
|
150 |
-
- **Compute Region:**
|
151 |
-
- **Carbon Emitted:**
|
152 |
|
153 |
## Technical Specifications [optional]
|
154 |
|
@@ -162,15 +219,20 @@ Carbon emissions can be estimated using the [Machine Learning Impact calculator]
|
|
162 |
|
163 |
#### Hardware
|
164 |
|
165 |
-
|
|
|
|
|
|
|
166 |
|
167 |
#### Software
|
168 |
|
169 |
-
|
|
|
170 |
|
171 |
## Citation [optional]
|
172 |
|
173 |
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
|
|
174 |
|
175 |
**BibTeX:**
|
176 |
|
@@ -180,20 +242,6 @@ Carbon emissions can be estimated using the [Machine Learning Impact calculator]
|
|
180 |
|
181 |
[More Information Needed]
|
182 |
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
## Model Card Contact
|
198 |
|
199 |
-
|
|
|
17 |
|
18 |
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
|
20 |
+
- **Developed by:** Jesse Arzate
|
21 |
+
- **Model type:** Sequence-to-Sequence (Seq2Seq) Transformer-based model
|
22 |
+
- **Language(s) (NLP):** English
|
|
|
|
|
23 |
- **License:** [More Information Needed]
|
24 |
+
- **Finetuned from model [optional]:** Whisper ASR: distil-large-v3
|
25 |
|
26 |
### Model Sources [optional]
|
27 |
|
28 |
<!-- Provide the basic links for the model. -->
|
29 |
|
30 |
+
- **Repository:** https://github.com/Vaibhavs10/fast-whisper-finetuning
|
|
|
|
|
31 |
|
32 |
## Uses
|
33 |
|
|
|
65 |
|
66 |
## How to Get Started with the Model
|
67 |
|
68 |
+
Use the code below to get started with the model.
|
69 |
+
```python
|
70 |
+
from transformers import (
|
71 |
+
AutomaticSpeechRecognitionPipeline,
|
72 |
+
WhisperForConditionalGeneration,
|
73 |
+
WhisperTokenizer,
|
74 |
+
WhisperProcessor,
|
75 |
+
)
|
76 |
+
from peft import PeftModel, PeftConfig
|
77 |
+
|
78 |
+
|
79 |
+
peft_model_id = "baileyarzate/whisper-distil-large-v3-atc-english" # huggingface model path
|
80 |
+
language = "en"
|
81 |
+
task = "transcribe"
|
82 |
+
device = 'cuda'
|
83 |
+
peft_config = PeftConfig.from_pretrained(peft_model_id)
|
84 |
+
model = WhisperForConditionalGeneration.from_pretrained(
|
85 |
+
peft_config.base_model_name_or_path, device_map="cuda"
|
86 |
+
).to(device)
|
87 |
+
|
88 |
+
model = PeftModel.from_pretrained(model, peft_model_id).to(device)
|
89 |
+
tokenizer = WhisperTokenizer.from_pretrained(peft_config.base_model_name_or_path, language=language, task=task)
|
90 |
+
processor = WhisperProcessor.from_pretrained(peft_config.base_model_name_or_path, language=language, task=task)
|
91 |
+
feature_extractor = processor.feature_extractor
|
92 |
+
forced_decoder_ids = processor.get_decoder_prompt_ids(language=language, task=task)
|
93 |
+
pipe = AutomaticSpeechRecognitionPipeline(model=model, tokenizer=tokenizer, feature_extractor=feature_extractor)
|
94 |
+
model.config.use_cache = True
|
95 |
+
|
96 |
+
def transcribe(audio):
|
97 |
+
with torch.cuda.amp.autocast():
|
98 |
+
text = pipe(audio, generate_kwargs={"forced_decoder_ids": forced_decoder_ids}, max_new_tokens=255)["text"]
|
99 |
+
return text
|
100 |
+
|
101 |
+
transcriptions_finetuned = []
|
102 |
+
for i in tqdm(range(len(df_subset))):
|
103 |
+
# When you only have audio file path
|
104 |
+
#transcriptions_finetuned.append(transcribe(librosa.load(df["path"][i], sr = 16000, offset = df["start"][i], duration = df["stop"][i] - df["start"][i])[0])) #,model
|
105 |
+
# When you have audio array, saves time
|
106 |
+
transcriptions_finetuned.append(transcribe(df_subset['array'].iloc[i]))
|
107 |
+
transcriptions_finetuned = pd.DataFrame(transcriptions_finetuned, columns=['transcription_finetuned'])
|
108 |
+
df_subset = df_subset.reset_index().drop(columns=['index'])
|
109 |
+
df_subset = pd.concat([df_subset, transcriptions_finetuned], axis=1)
|
110 |
+
```
|
111 |
|
112 |
## Training Details
|
113 |
|
114 |
### Training Data
|
115 |
|
116 |
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
117 |
+
Dataset: ATC audio recordings from actual flight operations.
|
118 |
+
Size: ~250 hours of annotated data.
|
119 |
+
|
120 |
|
121 |
[More Information Needed]
|
122 |
|
123 |
### Training Procedure
|
124 |
|
125 |
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
126 |
+
Modeled the procedure after: https://github.com/Vaibhavs10/fast-whisper-finetuning
|
127 |
|
128 |
#### Preprocessing [optional]
|
129 |
|
130 |
+
Preprocessing: Striped leading and trailing whitespaces from transcript sentences. Removed any sentences containing the phrase "UNINTELLIGIBLE" to filter out unclear or garbled speech. Removed filler words such as "ah" or "uh".
|
131 |
|
132 |
|
133 |
#### Training Hyperparameters
|
134 |
|
135 |
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
136 |
+
```python
|
137 |
+
training_args = Seq2SeqTrainingArguments(
|
138 |
+
per_device_train_batch_size=4,
|
139 |
+
gradient_accumulation_steps=2,
|
140 |
+
learning_rate=5e-4,
|
141 |
+
warmup_steps=100,
|
142 |
+
num_train_epochs=3,
|
143 |
+
fp16=True,
|
144 |
+
per_device_eval_batch_size=4,
|
145 |
+
generation_max_length=128,
|
146 |
+
logging_steps=100,
|
147 |
+
save_steps=500,
|
148 |
+
save_total_limit=3,
|
149 |
+
remove_unused_columns=False, # required as the PeftModel forward doesn't have the signature of the wrapped model's forward
|
150 |
+
label_names=["labels"], # same reason as above
|
151 |
+
)
|
152 |
+
```
|
153 |
#### Speeds, Sizes, Times [optional]
|
154 |
|
155 |
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
156 |
+
Inference time is about 2 samples per second with an RTX A2000.
|
157 |
|
|
|
158 |
|
159 |
## Evaluation
|
160 |
|
161 |
<!-- This section describes the evaluation protocols and provides the results. -->
|
162 |
+
Final training loss: 0.103
|
163 |
|
164 |
### Testing Data, Factors & Metrics
|
165 |
|
166 |
#### Testing Data
|
167 |
|
168 |
<!-- This should link to a Dataset Card if possible. -->
|
169 |
+
Dataset: ATC audio recordings from actual flight operations.
|
170 |
+
Size: ~250 hours of annotated data.
|
171 |
+
Randomly sampled 20% of the data with seed = 42.
|
172 |
|
173 |
[More Information Needed]
|
174 |
|
|
|
182 |
|
183 |
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
184 |
|
185 |
+
Word Error Rate
|
186 |
+
Normalized Word Error Rate
|
187 |
|
188 |
### Results
|
189 |
|
190 |
+
Mean WER for 500 test samples: 0.145
|
191 |
+
with 95% confidence interval: (0.123, 0.167)
|
192 |
|
193 |
#### Summary
|
194 |
|
195 |
+
[IN PROGRESS]
|
196 |
|
197 |
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
## Environmental Impact
|
199 |
|
200 |
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
201 |
|
202 |
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
203 |
|
204 |
+
- **Hardware Type:** RTX A2000
|
205 |
+
- **Hours used:** 24
|
206 |
+
- **Cloud Provider:** Private Infrustructure
|
207 |
+
- **Compute Region:** Southern California
|
208 |
+
- **Carbon Emitted:** 1.57 kg
|
209 |
|
210 |
## Technical Specifications [optional]
|
211 |
|
|
|
219 |
|
220 |
#### Hardware
|
221 |
|
222 |
+
CPU: AMD EPYC 7313P 16-Core Processor 3.00 GHz
|
223 |
+
GPU: NVIDIA RTX A2000
|
224 |
+
vRAM: 6GB
|
225 |
+
RAM: 128GB
|
226 |
|
227 |
#### Software
|
228 |
|
229 |
+
Windows 11 Enterprise - 21H2
|
230 |
+
Python 3.10.14
|
231 |
|
232 |
## Citation [optional]
|
233 |
|
234 |
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
235 |
+
[IN PROGRESS]
|
236 |
|
237 |
**BibTeX:**
|
238 |
|
|
|
242 |
|
243 |
[More Information Needed]
|
244 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
245 |
## Model Card Contact
|
246 |
|
247 |
+
Jesse Arzate: [email protected]
|