--- language: - ar license: apache-2.0 tags: - automatic-speech-recognition - hf-asr-leaderboard - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 metrics: - wer - cer widget: - example_title: Example 1 src: https://huggingface.co/bakrianoo/sinai-voice-ar-stt/raw/main/examples/common_voice_ar_19077324.mp3 - example_title: Example 2 src: https://huggingface.co/bakrianoo/sinai-voice-ar-stt/raw/main/examples/common_voice_ar_19205138.mp3 - example_title: Example 3 src: https://huggingface.co/bakrianoo/sinai-voice-ar-stt/raw/main/examples/common_voice_ar_19331711.mp3 base_model: facebook/wav2vec2-xls-r-300m model-index: - name: Sinai Voice Arabic Speech Recognition Model results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: name: Common Voice ar type: mozilla-foundation/common_voice_8_0 args: ar metrics: - type: wer value: 0.181 name: Test WER - type: cer value: 0.049 name: Test CER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ar metrics: - type: wer value: 93.03 name: Test WER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ar metrics: - type: wer value: 90.79 name: Test WER --- # Sinai Voice Arabic Speech Recognition Model # نموذج **صوت سيناء** للتعرف على الأصوات العربية الفصحى و تحويلها إلى نصوص This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - AR dataset. It achieves the following results on the evaluation set: - Loss: 0.2141 - Wer: 0.1808 It achieves the following results on the evaluation set: - eval_loss = 0.2141 - eval_samples = 10388 - eval_wer = 0.181 - eval_cer = 0.049 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id bakrianoo/sinai-voice-ar-stt --dataset mozilla-foundation/common_voice_8_0 --config ar --split test ``` ### Inference Without LM ```python from transformers import (Wav2Vec2Processor, Wav2Vec2ForCTC) import torchaudio import torch def speech_file_to_array_fn(voice_path, resampling_to=16000): speech_array, sampling_rate = torchaudio.load(voice_path) resampler = torchaudio.transforms.Resample(sampling_rate, resampling_to) return resampler(speech_array)[0].numpy(), sampling_rate # load the model cp = "bakrianoo/sinai-voice-ar-stt" processor = Wav2Vec2Processor.from_pretrained(cp) model = Wav2Vec2ForCTC.from_pretrained(cp) # recognize the text in a sample sound file sound_path = './my_voice.mp3' sample, sr = speech_file_to_array_fn(sound_path) inputs = processor([sample], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values,).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 10 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 256 - total_eval_batch_size: 80 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.354 | 0.64 | 1000 | 0.4109 | 0.4493 | | 0.5886 | 1.28 | 2000 | 0.2798 | 0.3099 | | 0.4977 | 1.92 | 3000 | 0.2387 | 0.2673 | | 0.4253 | 2.56 | 4000 | 0.2266 | 0.2523 | | 0.3942 | 3.2 | 5000 | 0.2171 | 0.2437 | | 0.3619 | 3.84 | 6000 | 0.2076 | 0.2253 | | 0.3245 | 4.48 | 7000 | 0.2088 | 0.2186 | | 0.308 | 5.12 | 8000 | 0.2086 | 0.2206 | | 0.2881 | 5.76 | 9000 | 0.2089 | 0.2105 | | 0.2557 | 6.4 | 10000 | 0.2015 | 0.2004 | | 0.248 | 7.04 | 11000 | 0.2044 | 0.1953 | | 0.2251 | 7.68 | 12000 | 0.2058 | 0.1932 | | 0.2052 | 8.32 | 13000 | 0.2117 | 0.1878 | | 0.1976 | 8.96 | 14000 | 0.2104 | 0.1825 | | 0.1845 | 9.6 | 15000 | 0.2156 | 0.1821 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0