bandi2716 commited on
Commit
8cb43cf
·
verified ·
1 Parent(s): 663a5d3

Upload folder using huggingface_hub

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,401 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:10501
8
+ - loss:CosineSimilarityLoss
9
+ base_model: klue/roberta-base
10
+ widget:
11
+ - source_sentence: 위치도 구성도 굉장히 만족스러운 숙소였습니다.
12
+ sentences:
13
+ - 숙박시설의 위치와 구성은 매우 만족스러웠습니다.
14
+ - 주인은 친절하고 유익합니다.
15
+ - 화장실과 현관 중 너가 켜길 원하는 조명은 어느 곳이야?
16
+ - source_sentence: 빔프로젝터 사용하지마.
17
+ sentences:
18
+ - 라니냐가 일어날 때 해수면은 몇 도나 내려가는지 찾아줘.
19
+ - 혹시 집안 조명 어떻게 밝기 조정하는 지 아니?
20
+ - 밖에 나갈때 집안모드말고 방범모드 켜놓는 거 잊으면 안돼
21
+ - source_sentence: 숙소는 사진 그대로인데 생각보다 훨씬 커요.
22
+ sentences:
23
+ - 회사에서 보낸 메일은 지금 로그인된 지메일 계정보다는 다른 지메일로 보내주는게 좋아.
24
+ - 숙소 실제모습은 사진보다 훨씬 좋았습니다.
25
+ - 하지만, 그 숙소의 위치는 추위와 시끄러운 소리를 모두 수용할 수 있을 만큼 좋았습니다.
26
+ - source_sentence: 어떤 방법으로 환풍기를 작동시켜야 돼?
27
+ sentences:
28
+ - 밤에 말고 낮에는 조명등 좀 덜 밝게 해보는게 어때?
29
+ - 현재 이라크는 한국 외에도 입국 전 14일 이내에 중국, 이탈리아, 이란, 일본, 태국, 싱가포르, 쿠웨이트, 바레인 등 총 9개 국가 방문자
30
+ 입국 금지를 시행 중이다.
31
+ - 에어컨 켜는 건 별로 안 좋은 생각인데.
32
+ - source_sentence: 후라이팬도 더럽고 수압도 너무 약합니다.
33
+ sentences:
34
+ - 숙소 엄청 깨끗하고 집도 너무 예뻐요.
35
+ - 그 방의 풍경은 말로 표현할 수 없습니다.
36
+ - 반면, 도서관, 영화관은 각각 -11%, -17%로 언급량이 감소했다.
37
+ pipeline_tag: sentence-similarity
38
+ library_name: sentence-transformers
39
+ metrics:
40
+ - pearson_cosine
41
+ - spearman_cosine
42
+ model-index:
43
+ - name: SentenceTransformer based on klue/roberta-base
44
+ results:
45
+ - task:
46
+ type: semantic-similarity
47
+ name: Semantic Similarity
48
+ dataset:
49
+ name: Unknown
50
+ type: unknown
51
+ metrics:
52
+ - type: pearson_cosine
53
+ value: 0.34770703293721916
54
+ name: Pearson Cosine
55
+ - type: spearman_cosine
56
+ value: 0.35560473197486514
57
+ name: Spearman Cosine
58
+ - type: pearson_cosine
59
+ value: 0.9621254203651556
60
+ name: Pearson Cosine
61
+ - type: spearman_cosine
62
+ value: 0.9227170063087085
63
+ name: Spearman Cosine
64
+ ---
65
+
66
+ # SentenceTransformer based on klue/roberta-base
67
+
68
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [klue/roberta-base](https://huggingface.co/klue/roberta-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
69
+
70
+ ## Model Details
71
+
72
+ ### Model Description
73
+ - **Model Type:** Sentence Transformer
74
+ - **Base model:** [klue/roberta-base](https://huggingface.co/klue/roberta-base) <!-- at revision 02f94ba5e3fcb7e2a58a390b8639b0fac974a8da -->
75
+ - **Maximum Sequence Length:** 512 tokens
76
+ - **Output Dimensionality:** 768 dimensions
77
+ - **Similarity Function:** Cosine Similarity
78
+ <!-- - **Training Dataset:** Unknown -->
79
+ <!-- - **Language:** Unknown -->
80
+ <!-- - **License:** Unknown -->
81
+
82
+ ### Model Sources
83
+
84
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
85
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
86
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
87
+
88
+ ### Full Model Architecture
89
+
90
+ ```
91
+ SentenceTransformer(
92
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
93
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
94
+ )
95
+ ```
96
+
97
+ ## Usage
98
+
99
+ ### Direct Usage (Sentence Transformers)
100
+
101
+ First install the Sentence Transformers library:
102
+
103
+ ```bash
104
+ pip install -U sentence-transformers
105
+ ```
106
+
107
+ Then you can load this model and run inference.
108
+ ```python
109
+ from sentence_transformers import SentenceTransformer
110
+
111
+ # Download from the 🤗 Hub
112
+ model = SentenceTransformer("sentence_transformers_model_id")
113
+ # Run inference
114
+ sentences = [
115
+ '후라이팬도 더럽고 수압도 너무 약합니다.',
116
+ '숙소 엄청 깨끗하고 집도 너무 예뻐요.',
117
+ '그 방의 풍경은 말로 표현할 수 없습니다.',
118
+ ]
119
+ embeddings = model.encode(sentences)
120
+ print(embeddings.shape)
121
+ # [3, 768]
122
+
123
+ # Get the similarity scores for the embeddings
124
+ similarities = model.similarity(embeddings, embeddings)
125
+ print(similarities.shape)
126
+ # [3, 3]
127
+ ```
128
+
129
+ <!--
130
+ ### Direct Usage (Transformers)
131
+
132
+ <details><summary>Click to see the direct usage in Transformers</summary>
133
+
134
+ </details>
135
+ -->
136
+
137
+ <!--
138
+ ### Downstream Usage (Sentence Transformers)
139
+
140
+ You can finetune this model on your own dataset.
141
+
142
+ <details><summary>Click to expand</summary>
143
+
144
+ </details>
145
+ -->
146
+
147
+ <!--
148
+ ### Out-of-Scope Use
149
+
150
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
151
+ -->
152
+
153
+ ## Evaluation
154
+
155
+ ### Metrics
156
+
157
+ #### Semantic Similarity
158
+
159
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
160
+
161
+ | Metric | Value |
162
+ |:--------------------|:-----------|
163
+ | pearson_cosine | 0.3477 |
164
+ | **spearman_cosine** | **0.3556** |
165
+
166
+ #### Semantic Similarity
167
+
168
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
169
+
170
+ | Metric | Value |
171
+ |:--------------------|:-----------|
172
+ | pearson_cosine | 0.9621 |
173
+ | **spearman_cosine** | **0.9227** |
174
+
175
+ <!--
176
+ ## Bias, Risks and Limitations
177
+
178
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
179
+ -->
180
+
181
+ <!--
182
+ ### Recommendations
183
+
184
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
185
+ -->
186
+
187
+ ## Training Details
188
+
189
+ ### Training Dataset
190
+
191
+ #### Unnamed Dataset
192
+
193
+
194
+ * Size: 10,501 training samples
195
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
196
+ * Approximate statistics based on the first 1000 samples:
197
+ | | sentence_0 | sentence_1 | label |
198
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
199
+ | type | string | string | float |
200
+ | details | <ul><li>min: 7 tokens</li><li>mean: 19.66 tokens</li><li>max: 70 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 19.42 tokens</li><li>max: 65 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.44</li><li>max: 1.0</li></ul> |
201
+ * Samples:
202
+ | sentence_0 | sentence_1 | label |
203
+ |:-------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------|:---------------------------------|
204
+ | <code>만약, 비누와 물이 없으면 알콜이 포함된 손 소독제를 사용하세요.</code> | <code>보호의·감염병 예방 물품키트 등 방역 물품을 확충하고, 어린이집·경로당 등 시설에 마스크와 손 소독제 등 용품도 지원한다.</code> | <code>0.13999999999999999</code> |
205
+ | <code>약속 시간에 맞춰서 오는 대신에 오분 전에 도착하도록 하자.</code> | <code>앞으로는 늦지 말고 약속 오분 전에 도착해라.</code> | <code>0.6599999999999999</code> |
206
+ | <code>‘대한민국의 위대한 2020년’으로 역사에 기록될 수 있도록 남은 한 달, 유종의 미를 거두기를 바랍니다.</code> | <code>이해관계 대립으로 미뤄졌던 대규모 국책사업도 신속한 추진으로 위기 국면에서 경제 활력 제고와 일자리 창출에 기여할 수 있기를 바랍니다.</code> | <code>0.04</code> |
207
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
208
+ ```json
209
+ {
210
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
211
+ }
212
+ ```
213
+
214
+ ### Training Hyperparameters
215
+ #### Non-Default Hyperparameters
216
+
217
+ - `eval_strategy`: steps
218
+ - `per_device_train_batch_size`: 16
219
+ - `per_device_eval_batch_size`: 16
220
+ - `num_train_epochs`: 4
221
+ - `multi_dataset_batch_sampler`: round_robin
222
+
223
+ #### All Hyperparameters
224
+ <details><summary>Click to expand</summary>
225
+
226
+ - `overwrite_output_dir`: False
227
+ - `do_predict`: False
228
+ - `eval_strategy`: steps
229
+ - `prediction_loss_only`: True
230
+ - `per_device_train_batch_size`: 16
231
+ - `per_device_eval_batch_size`: 16
232
+ - `per_gpu_train_batch_size`: None
233
+ - `per_gpu_eval_batch_size`: None
234
+ - `gradient_accumulation_steps`: 1
235
+ - `eval_accumulation_steps`: None
236
+ - `torch_empty_cache_steps`: None
237
+ - `learning_rate`: 5e-05
238
+ - `weight_decay`: 0.0
239
+ - `adam_beta1`: 0.9
240
+ - `adam_beta2`: 0.999
241
+ - `adam_epsilon`: 1e-08
242
+ - `max_grad_norm`: 1
243
+ - `num_train_epochs`: 4
244
+ - `max_steps`: -1
245
+ - `lr_scheduler_type`: linear
246
+ - `lr_scheduler_kwargs`: {}
247
+ - `warmup_ratio`: 0.0
248
+ - `warmup_steps`: 0
249
+ - `log_level`: passive
250
+ - `log_level_replica`: warning
251
+ - `log_on_each_node`: True
252
+ - `logging_nan_inf_filter`: True
253
+ - `save_safetensors`: True
254
+ - `save_on_each_node`: False
255
+ - `save_only_model`: False
256
+ - `restore_callback_states_from_checkpoint`: False
257
+ - `no_cuda`: False
258
+ - `use_cpu`: False
259
+ - `use_mps_device`: False
260
+ - `seed`: 42
261
+ - `data_seed`: None
262
+ - `jit_mode_eval`: False
263
+ - `use_ipex`: False
264
+ - `bf16`: False
265
+ - `fp16`: False
266
+ - `fp16_opt_level`: O1
267
+ - `half_precision_backend`: auto
268
+ - `bf16_full_eval`: False
269
+ - `fp16_full_eval`: False
270
+ - `tf32`: None
271
+ - `local_rank`: 0
272
+ - `ddp_backend`: None
273
+ - `tpu_num_cores`: None
274
+ - `tpu_metrics_debug`: False
275
+ - `debug`: []
276
+ - `dataloader_drop_last`: False
277
+ - `dataloader_num_workers`: 0
278
+ - `dataloader_prefetch_factor`: None
279
+ - `past_index`: -1
280
+ - `disable_tqdm`: False
281
+ - `remove_unused_columns`: True
282
+ - `label_names`: None
283
+ - `load_best_model_at_end`: False
284
+ - `ignore_data_skip`: False
285
+ - `fsdp`: []
286
+ - `fsdp_min_num_params`: 0
287
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
288
+ - `fsdp_transformer_layer_cls_to_wrap`: None
289
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
290
+ - `deepspeed`: None
291
+ - `label_smoothing_factor`: 0.0
292
+ - `optim`: adamw_torch
293
+ - `optim_args`: None
294
+ - `adafactor`: False
295
+ - `group_by_length`: False
296
+ - `length_column_name`: length
297
+ - `ddp_find_unused_parameters`: None
298
+ - `ddp_bucket_cap_mb`: None
299
+ - `ddp_broadcast_buffers`: False
300
+ - `dataloader_pin_memory`: True
301
+ - `dataloader_persistent_workers`: False
302
+ - `skip_memory_metrics`: True
303
+ - `use_legacy_prediction_loop`: False
304
+ - `push_to_hub`: False
305
+ - `resume_from_checkpoint`: None
306
+ - `hub_model_id`: None
307
+ - `hub_strategy`: every_save
308
+ - `hub_private_repo`: None
309
+ - `hub_always_push`: False
310
+ - `gradient_checkpointing`: False
311
+ - `gradient_checkpointing_kwargs`: None
312
+ - `include_inputs_for_metrics`: False
313
+ - `include_for_metrics`: []
314
+ - `eval_do_concat_batches`: True
315
+ - `fp16_backend`: auto
316
+ - `push_to_hub_model_id`: None
317
+ - `push_to_hub_organization`: None
318
+ - `mp_parameters`:
319
+ - `auto_find_batch_size`: False
320
+ - `full_determinism`: False
321
+ - `torchdynamo`: None
322
+ - `ray_scope`: last
323
+ - `ddp_timeout`: 1800
324
+ - `torch_compile`: False
325
+ - `torch_compile_backend`: None
326
+ - `torch_compile_mode`: None
327
+ - `dispatch_batches`: None
328
+ - `split_batches`: None
329
+ - `include_tokens_per_second`: False
330
+ - `include_num_input_tokens_seen`: False
331
+ - `neftune_noise_alpha`: None
332
+ - `optim_target_modules`: None
333
+ - `batch_eval_metrics`: False
334
+ - `eval_on_start`: False
335
+ - `use_liger_kernel`: False
336
+ - `eval_use_gather_object`: False
337
+ - `average_tokens_across_devices`: False
338
+ - `prompts`: None
339
+ - `batch_sampler`: batch_sampler
340
+ - `multi_dataset_batch_sampler`: round_robin
341
+
342
+ </details>
343
+
344
+ ### Training Logs
345
+ | Epoch | Step | Training Loss | spearman_cosine |
346
+ |:------:|:----:|:-------------:|:---------------:|
347
+ | 0 | 0 | - | 0.3556 |
348
+ | 0.7610 | 500 | 0.028 | - |
349
+ | 1.0 | 657 | - | 0.9152 |
350
+ | 1.5221 | 1000 | 0.0079 | 0.9157 |
351
+ | 2.0 | 1314 | - | 0.9189 |
352
+ | 2.2831 | 1500 | 0.005 | - |
353
+ | 3.0 | 1971 | - | 0.9222 |
354
+ | 3.0441 | 2000 | 0.0035 | 0.9216 |
355
+ | 3.8052 | 2500 | 0.0026 | - |
356
+ | 4.0 | 2628 | - | 0.9227 |
357
+
358
+
359
+ ### Framework Versions
360
+ - Python: 3.10.12
361
+ - Sentence Transformers: 3.3.1
362
+ - Transformers: 4.47.1
363
+ - PyTorch: 2.5.1+cu121
364
+ - Accelerate: 1.2.1
365
+ - Datasets: 3.2.0
366
+ - Tokenizers: 0.21.0
367
+
368
+ ## Citation
369
+
370
+ ### BibTeX
371
+
372
+ #### Sentence Transformers
373
+ ```bibtex
374
+ @inproceedings{reimers-2019-sentence-bert,
375
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
376
+ author = "Reimers, Nils and Gurevych, Iryna",
377
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
378
+ month = "11",
379
+ year = "2019",
380
+ publisher = "Association for Computational Linguistics",
381
+ url = "https://arxiv.org/abs/1908.10084",
382
+ }
383
+ ```
384
+
385
+ <!--
386
+ ## Glossary
387
+
388
+ *Clearly define terms in order to be accessible across audiences.*
389
+ -->
390
+
391
+ <!--
392
+ ## Model Card Authors
393
+
394
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
395
+ -->
396
+
397
+ <!--
398
+ ## Model Card Contact
399
+
400
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
401
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "klue/roberta-base",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.47.1",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.47.1",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:57c67c71fb62fa2fcbec62afbed312c797b4c17042390afa0a3caee89898dce0
3
+ size 442494816
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "extra_special_tokens": {},
51
+ "mask_token": "[MASK]",
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_token": "[PAD]",
55
+ "sep_token": "[SEP]",
56
+ "strip_accents": null,
57
+ "tokenize_chinese_chars": true,
58
+ "tokenizer_class": "BertTokenizer",
59
+ "unk_token": "[UNK]"
60
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff