baqu2213 commited on
Commit
8f3d420
Β·
verified Β·
1 Parent(s): aeffc0b

Upload 3 files

Browse files
.gitattributes CHANGED
@@ -135,3 +135,4 @@ Danbooru[[:space:]]Prompt[[:space:]]Selector/TEST2024/NAIA_0222_testv2.exe filte
135
  Danbooru[[:space:]]Prompt[[:space:]]Selector/TEST2024/NAIA_0222_testv3.exe filter=lfs diff=lfs merge=lfs -text
136
  NAIA_0224_testv1.exe filter=lfs diff=lfs merge=lfs -text
137
  Danbooru[[:space:]]Prompt[[:space:]]Selector/TEST2024/NAIA_0226_testv1.exe filter=lfs diff=lfs merge=lfs -text
 
 
135
  Danbooru[[:space:]]Prompt[[:space:]]Selector/TEST2024/NAIA_0222_testv3.exe filter=lfs diff=lfs merge=lfs -text
136
  NAIA_0224_testv1.exe filter=lfs diff=lfs merge=lfs -text
137
  Danbooru[[:space:]]Prompt[[:space:]]Selector/TEST2024/NAIA_0226_testv1.exe filter=lfs diff=lfs merge=lfs -text
138
+ Danbooru[[:space:]]Prompt[[:space:]]Selector/TEST2024/NAIA_0228_testv2.exe filter=lfs diff=lfs merge=lfs -text
Danbooru Prompt Selector/TEST2024/NAIA_0228_testv2.exe ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dcf08a1a57c417ff09cec03b41545f9200ef30c3ede7f440be8222ce1da09cf1
3
+ size 854809343
Danbooru Prompt Selector/TEST2024/NAIA_0228_testv2.py ADDED
The diff for this file is too large to render. See raw diff
 
Danbooru Prompt Selector/TEST2024/NAIA_search.py CHANGED
@@ -1,6 +1,8 @@
1
  import pandas as pd
2
  import re
3
 
 
 
4
  # λͺ¨λ“  ν‚€μ›Œλ“œλ₯Ό ν¬ν•¨ν•˜λŠ” ν–‰λ§Œ ν•„ν„°λ§ν•˜λŠ” ν•¨μˆ˜
5
  def filter_rows_containing_all_keywords(df, keywords):
6
  special_chars = r".^$*+?{}[]\|()"
@@ -170,7 +172,7 @@ def search(df, search_request, exclude_request, E=None, N=None, S=None, G=None):
170
  ndf = matched_rows[matched_rows[column].str.contains(keyword, na=False, regex=True)]
171
  else:
172
  ndf = matched_rows[matched_rows[column].str.contains(keyword, na=False)]
173
- print(keyword, len(matched_rows), len(ndf))
174
  if not ndf.empty:
175
  ndfs.append(ndf.copy())
176
  del(ndf)
@@ -184,7 +186,7 @@ def search(df, search_request, exclude_request, E=None, N=None, S=None, G=None):
184
  if not matched_rows.empty:
185
  results = pd.concat([results, matched_rows])
186
  del[matched_rows]
187
- print(results)
188
  del[[df]]
189
  results = results.drop_duplicates(subset=['general'])
190
  df = results.copy()
 
1
  import pandas as pd
2
  import re
3
 
4
+ pd.options.mode.chained_assignment = None
5
+
6
  # λͺ¨λ“  ν‚€μ›Œλ“œλ₯Ό ν¬ν•¨ν•˜λŠ” ν–‰λ§Œ ν•„ν„°λ§ν•˜λŠ” ν•¨μˆ˜
7
  def filter_rows_containing_all_keywords(df, keywords):
8
  special_chars = r".^$*+?{}[]\|()"
 
172
  ndf = matched_rows[matched_rows[column].str.contains(keyword, na=False, regex=True)]
173
  else:
174
  ndf = matched_rows[matched_rows[column].str.contains(keyword, na=False)]
175
+ #print(keyword, len(matched_rows), len(ndf))
176
  if not ndf.empty:
177
  ndfs.append(ndf.copy())
178
  del(ndf)
 
186
  if not matched_rows.empty:
187
  results = pd.concat([results, matched_rows])
188
  del[matched_rows]
189
+ #print(results)
190
  del[[df]]
191
  results = results.drop_duplicates(subset=['general'])
192
  df = results.copy()