--- license: apache-2.0 library_name: peft tags: - generated_from_trainer metrics: - accuracy base_model: google/vit-base-patch16-224-in21k model-index: - name: vit-base-patch16-224-in21k-finetuned-lora-food101 results: [] --- # vit-base-patch16-224-in21k-finetuned-lora-food101 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1255 - Accuracy: 0.964 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 9 | 0.5628 | 0.9 | | 2.1887 | 2.0 | 18 | 0.2129 | 0.948 | | 0.3516 | 3.0 | 27 | 0.1464 | 0.952 | | 0.2151 | 4.0 | 36 | 0.1255 | 0.964 | | 0.183 | 5.0 | 45 | 0.1249 | 0.958 | ### Framework versions - PEFT 0.10.1.dev0 - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2