File size: 5,106 Bytes
7a73c3d
 
 
236d88a
 
 
 
 
 
 
 
 
 
7a73c3d
 
236d88a
7a73c3d
 
 
236d88a
7a73c3d
236d88a
 
 
 
 
 
7a73c3d
236d88a
b413427
236d88a
 
7a73c3d
 
 
 
236d88a
7a73c3d
 
236d88a
7a73c3d
 
 
236d88a
 
7a73c3d
236d88a
7a73c3d
 
236d88a
 
7a73c3d
236d88a
7a73c3d
 
 
236d88a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a73c3d
 
 
 
 
 
236d88a
7a73c3d
 
 
 
 
 
236d88a
 
7a73c3d
 
236d88a
 
 
 
 
7a73c3d
236d88a
7a73c3d
 
 
 
 
 
 
236d88a
7a73c3d
 
236d88a
7a73c3d
236d88a
 
 
b413427
236d88a
b413427
 
236d88a
b413427
236d88a
b413427
236d88a
 
7a73c3d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
---
base_model: AI-Sweden-Models/gpt-sw3-1.3b
library_name: peft
datasets:
- barbaroo/Sprotin_parallel
language:
- en
- fo
metrics:
- chrf
- bleu
- bertscore
pipeline_tag: text-generation
---

# Model Card: English–Faroese Translation Adapter

## Model Details

**Model Description**

- **Developed by:** Barbara Scalvini
- **Model type:** Language model adapter for **English → Faroese** translation  
- **Language(s):** English, Faroese  
- **License:** This adapter inherits the license from the original GPT-SW3 1.3B model.
- **Finetuned from model:** [AI-Sweden-Models/gpt-sw3-1.3b](https://huggingface.co/AI-Sweden-Models/gpt-sw3-1.3b)  
- **Library used:** [PEFT 0.13.0](https://github.com/huggingface/peft)

### Model Sources 

- **Paper:** [COMING SOON]  
---

## Uses

### Direct Use
This adapter is intended to perform **English→Faroese** translation, leveraging a **parameter-efficient fine-tuning** (PEFT) approach.

### Downstream Use [optional]
- Can be integrated into broader **multilingual** or **localization** workflows.


### Out-of-Scope Use
- Any uses that rely on languages other than **English or Faroese** will likely yield suboptimal results.
- Other tasks (e.g., summarization, classification) may be unsupported or require further fine-tuning.

---

## Bias, Risks, and Limitations
- **Biases:** The model could reflect **biases** present in the training data, such as historical or societal biases in English or Faroese texts.
- **Recommendation:** Users should **critically evaluate** outputs, especially in sensitive or high-stakes applications.

---

## How to Get Started with the Model

```python
import torch
from peft import AutoPeftModelForCausalLM
from transformers import AutoTokenizer
import pandas as pd

ADAPTER_REPO = "barbaroo/gptsw3_translate_1.3B"
BASE_MODEL = "AI-Sweden-Models/gpt-sw3-1.3b"

# 1. Load the tokenizer from the base model
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)

model = AutoPeftModelForCausalLM.from_pretrained(
    ADAPTER_REPO,
    load_in_8bit=True,             # Optional: 8-bit quantization for GPU memory efficiency
    device_map="auto",             # Automatically spread layers across available GPUs
)

# Ensure the model is in evaluation mode
model.eval()

# Alpaca-style prompt template
alpaca_prompt = """
### Instruction:
{}

### Input:
{}

### Response:
{}
"""

# EOS token from the tokenizer
EOS_TOKEN = tokenizer.eos_token 
print(EOS_TOKEN)

sentences =  ['hello world']

translations = []

for sentence in sentences:
    # Tokenize the input sentence and prepare the prompt for each sentence
    inputs = tokenizer(
        [
            alpaca_prompt.format(
                "Translate this sentence from English to Faroese:",  # instruction
                sentence,  # input sentence to translate
                "",  # output - leave blank for generation
            )
        ], 
        return_tensors="pt"
    ).to("cuda")

    # Generate the output
    outputs = model.generate(**inputs,
                             max_new_tokens=2000, 
                             eos_token_id=tokenizer.eos_token_id,  # Ensure EOS token is used
                             pad_token_id=tokenizer.pad_token_id,  # Ensure padding token is used
                             use_cache=True,
                             do_sample = True,
                             temperature = 0.1,
                             top_p=1)

    # Decode the generated tokens into a string
    output_string = tokenizer.batch_decode(outputs, skip_special_tokens=False)[0]
    #print(output_string)

    # Use a regular expression to extract the response part
    try:
        spl_word_1 = 'Response:\n'
        res =  output_string.split(spl_word_1, 1)
        response = res[1]
        translation = response.replace(EOS_TOKEN, '')
        translations.append(translation)

    except:
        translation = ''
        translations.append(translation)
        


    print(translation)
```


## Training Details

### Training Data

We used the Sprotin parallel corpus for **English–Faroese** translation: [barbaroo/Sprotin_parallel](https://huggingface.co/datasets/barbaroo/Sprotin_parallel). 


### Training Procedure

#### Preprocessing [optional]

- **Tokenization**: We used the tokenizer from the base model `AI-Sweden-Models/gpt-sw3-1.3b`.
- The Alpaca prompt format was used, with Instruction, Input and Response. 

#### Training Hyperparameters
 
- **Epochs**: **3** total, with an **early stopping** criterion monitoring validation loss.  
- **Batch Size**: **2, with 4 Gradient accumulation steps**  
- **Learning Rate**: **2e-4** 
- **Optimizer**: **AdamW** with a linear learning-rate scheduler and warm-up.

---

## Evaluation

### Testing Data, Factors & Metrics

#### Testing Data

- The model was evaluated on the **[FLORES-200]** benchmark,  of ~1012 English–Faroese pairs.  


#### Metrics and Results

- **BLEU**: **[0.179]** 
- **chrF**: **[49.2]**
- **BERTScore f1**: **[0.947]**

Human evaluation was also performed (see paper)


## Citation []

[COMING SOON]

---
## Framework versions 

- PEFT 0.13.0