File size: 5,106 Bytes
7a73c3d 236d88a 7a73c3d 236d88a 7a73c3d 236d88a 7a73c3d 236d88a 7a73c3d 236d88a b413427 236d88a 7a73c3d 236d88a 7a73c3d 236d88a 7a73c3d 236d88a 7a73c3d 236d88a 7a73c3d 236d88a 7a73c3d 236d88a 7a73c3d 236d88a 7a73c3d 236d88a 7a73c3d 236d88a 7a73c3d 236d88a 7a73c3d 236d88a 7a73c3d 236d88a 7a73c3d 236d88a 7a73c3d 236d88a b413427 236d88a b413427 236d88a b413427 236d88a b413427 236d88a 7a73c3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
---
base_model: AI-Sweden-Models/gpt-sw3-1.3b
library_name: peft
datasets:
- barbaroo/Sprotin_parallel
language:
- en
- fo
metrics:
- chrf
- bleu
- bertscore
pipeline_tag: text-generation
---
# Model Card: English–Faroese Translation Adapter
## Model Details
**Model Description**
- **Developed by:** Barbara Scalvini
- **Model type:** Language model adapter for **English → Faroese** translation
- **Language(s):** English, Faroese
- **License:** This adapter inherits the license from the original GPT-SW3 1.3B model.
- **Finetuned from model:** [AI-Sweden-Models/gpt-sw3-1.3b](https://huggingface.co/AI-Sweden-Models/gpt-sw3-1.3b)
- **Library used:** [PEFT 0.13.0](https://github.com/huggingface/peft)
### Model Sources
- **Paper:** [COMING SOON]
---
## Uses
### Direct Use
This adapter is intended to perform **English→Faroese** translation, leveraging a **parameter-efficient fine-tuning** (PEFT) approach.
### Downstream Use [optional]
- Can be integrated into broader **multilingual** or **localization** workflows.
### Out-of-Scope Use
- Any uses that rely on languages other than **English or Faroese** will likely yield suboptimal results.
- Other tasks (e.g., summarization, classification) may be unsupported or require further fine-tuning.
---
## Bias, Risks, and Limitations
- **Biases:** The model could reflect **biases** present in the training data, such as historical or societal biases in English or Faroese texts.
- **Recommendation:** Users should **critically evaluate** outputs, especially in sensitive or high-stakes applications.
---
## How to Get Started with the Model
```python
import torch
from peft import AutoPeftModelForCausalLM
from transformers import AutoTokenizer
import pandas as pd
ADAPTER_REPO = "barbaroo/gptsw3_translate_1.3B"
BASE_MODEL = "AI-Sweden-Models/gpt-sw3-1.3b"
# 1. Load the tokenizer from the base model
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
model = AutoPeftModelForCausalLM.from_pretrained(
ADAPTER_REPO,
load_in_8bit=True, # Optional: 8-bit quantization for GPU memory efficiency
device_map="auto", # Automatically spread layers across available GPUs
)
# Ensure the model is in evaluation mode
model.eval()
# Alpaca-style prompt template
alpaca_prompt = """
### Instruction:
{}
### Input:
{}
### Response:
{}
"""
# EOS token from the tokenizer
EOS_TOKEN = tokenizer.eos_token
print(EOS_TOKEN)
sentences = ['hello world']
translations = []
for sentence in sentences:
# Tokenize the input sentence and prepare the prompt for each sentence
inputs = tokenizer(
[
alpaca_prompt.format(
"Translate this sentence from English to Faroese:", # instruction
sentence, # input sentence to translate
"", # output - leave blank for generation
)
],
return_tensors="pt"
).to("cuda")
# Generate the output
outputs = model.generate(**inputs,
max_new_tokens=2000,
eos_token_id=tokenizer.eos_token_id, # Ensure EOS token is used
pad_token_id=tokenizer.pad_token_id, # Ensure padding token is used
use_cache=True,
do_sample = True,
temperature = 0.1,
top_p=1)
# Decode the generated tokens into a string
output_string = tokenizer.batch_decode(outputs, skip_special_tokens=False)[0]
#print(output_string)
# Use a regular expression to extract the response part
try:
spl_word_1 = 'Response:\n'
res = output_string.split(spl_word_1, 1)
response = res[1]
translation = response.replace(EOS_TOKEN, '')
translations.append(translation)
except:
translation = ''
translations.append(translation)
print(translation)
```
## Training Details
### Training Data
We used the Sprotin parallel corpus for **English–Faroese** translation: [barbaroo/Sprotin_parallel](https://huggingface.co/datasets/barbaroo/Sprotin_parallel).
### Training Procedure
#### Preprocessing [optional]
- **Tokenization**: We used the tokenizer from the base model `AI-Sweden-Models/gpt-sw3-1.3b`.
- The Alpaca prompt format was used, with Instruction, Input and Response.
#### Training Hyperparameters
- **Epochs**: **3** total, with an **early stopping** criterion monitoring validation loss.
- **Batch Size**: **2, with 4 Gradient accumulation steps**
- **Learning Rate**: **2e-4**
- **Optimizer**: **AdamW** with a linear learning-rate scheduler and warm-up.
---
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
- The model was evaluated on the **[FLORES-200]** benchmark, of ~1012 English–Faroese pairs.
#### Metrics and Results
- **BLEU**: **[0.179]**
- **chrF**: **[49.2]**
- **BERTScore f1**: **[0.947]**
Human evaluation was also performed (see paper)
## Citation []
[COMING SOON]
---
## Framework versions
- PEFT 0.13.0 |