--- base_model: barc0/engineer1-heavy-barc-llama3.1-8b-ins-fft-transduction_lr1e-5_epoch3 datasets: - barc0/transduction_augmented_test_timearc_all_evaluation_new_seperate - barc0/transduction_rearc_dataset_400k - barc0/transduction_heavy_100k_jsonl library_name: peft license: llama3.1 tags: - alignment-handbook - trl - sft - generated_from_trainer model-index: - name: engineer1-heavy-barc-llama3.1-8b-instruct-lora64-testtime-finetuning results: [] --- # engineer1-heavy-barc-llama3.1-8b-instruct-lora64-testtime-finetuning This model is a fine-tuned version of [barc0/engineer1-heavy-barc-llama3.1-8b-ins-fft-transduction_lr1e-5_epoch3](https://huggingface.co/barc0/engineer1-heavy-barc-llama3.1-8b-ins-fft-transduction_lr1e-5_epoch3) on the barc0/transduction_augmented_test_timearc_all_evaluation_new_seperate, the barc0/transduction_rearc_dataset_400k and the barc0/transduction_heavy_100k_jsonl datasets. It achieves the following results on the evaluation set: - Loss: 0.0333 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0331 | 1.0 | 1334 | 0.0359 | | 0.028 | 2.0 | 2668 | 0.0299 | | 0.0009 | 3.0 | 4002 | 0.0333 | ### Framework versions - PEFT 0.12.0 - Transformers 4.45.0.dev0 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1