--- library_name: transformers license: llama3.1 base_model: meta-llama/Meta-Llama-3.1-8B-Instruct tags: - alignment-handbook - trl - sft - generated_from_trainer - trl - sft - generated_from_trainer datasets: - barc0/cot_transduction_100k-gpt4omini-description - barc0/cot_transduction_100k-gpt4-description - barc0/cot_transduction_200k_HEAVY_gpt4o-description model-index: - name: cot-400k-barc-llama3.1-8b-ins-fft-transduction_lr1e-5_epoch3 results: [] --- # cot-400k-barc-llama3.1-8b-ins-fft-transduction_lr1e-5_epoch3 This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) on the barc0/cot_transduction_100k-gpt4omini-description, the barc0/cot_transduction_100k-gpt4-description and the barc0/cot_transduction_200k_HEAVY_gpt4o-description datasets. It achieves the following results on the evaluation set: - Loss: 0.2160 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.2231 | 0.9998 | 2994 | 0.2183 | | 0.1861 | 2.0 | 5989 | 0.2049 | | 0.1483 | 2.9995 | 8982 | 0.2160 | ### Framework versions - Transformers 4.45.0.dev0 - Pytorch 2.4.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1