--- base_model: barc0/cot-transduction-arc-heavy datasets: - barc0/cot_train_dataset_960_ms10_v2 - barc0/cot_rearc_dataset_100_ms10 - barc0/seeds_cot library_name: peft license: llama3.1 tags: - alignment-handbook - trl - sft - generated_from_trainer model-index: - name: cot-trainset-ft-transduction-v3-lora-train results: [] --- # cot-trainset-ft-transduction-v3-lora-train This model is a fine-tuned version of [barc0/cot-transduction-arc-heavy](https://huggingface.co/barc0/cot-transduction-arc-heavy) on the barc0/cot_train_dataset_960_ms10_v2, the barc0/cot_rearc_dataset_100_ms10 and the barc0/seeds_cot datasets. It achieves the following results on the evaluation set: - Loss: 0.1921 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.1018 | 0.9982 | 277 | 0.1238 | | 0.0822 | 1.9964 | 554 | 0.1333 | ### Framework versions - PEFT 0.12.0 - Transformers 4.45.0.dev0 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1