File size: 2,236 Bytes
b23eed0 b015d82 b23eed0 0b33ab9 b23eed0 0b33ab9 b23eed0 0b33ab9 b23eed0 b015d82 b23eed0 b015d82 b23eed0 b015d82 b23eed0 b015d82 b23eed0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
library_name: transformers
license: llama3.2
base_model: meta-llama/Llama-3.2-1B-Instruct
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
- trl
- sft
- generated_from_trainer
datasets:
- barc0/transduction_angmented_100k-gpt4-description-gpt4omini-code_generated_problems
- barc0/transduction_angmented_100k_gpt4o-mini_generated_problems
- barc0/transduction_rearc_dataset_400k
model-index:
- name: llama3.2-1b-instruct-fft-transduction-engineer_lr1e-5_epoch4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# llama3.2-1b-instruct-fft-transduction-engineer_lr1e-5_epoch4
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the barc0/transduction_angmented_100k-gpt4-description-gpt4omini-code_generated_problems, the barc0/transduction_angmented_100k_gpt4o-mini_generated_problems and the barc0/transduction_rearc_dataset_400k datasets.
It achieves the following results on the evaluation set:
- Loss: 0.0409
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 256
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.0618 | 1.0 | 1126 | 0.0657 |
| 0.0504 | 2.0 | 2252 | 0.0494 |
| 0.0363 | 3.0 | 3378 | 0.0418 |
| 0.0238 | 4.0 | 4504 | 0.0409 |
### Framework versions
- Transformers 4.45.0.dev0
- Pytorch 2.4.0+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1
|