--- license: apache-2.0 base_model: microsoft/resnet-50 tags: - generated_from_trainer datasets: - chest-xray-classification metrics: - accuracy model-index: - name: Cheese_xray results: - task: name: Image Classification type: image-classification dataset: name: chest-xray-classification type: chest-xray-classification config: full split: test args: full metrics: - name: Accuracy type: accuracy value: 0.7061855670103093 --- # Cheese_xray This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the chest-xray-classification dataset. It achieves the following results on the evaluation set: - Loss: 0.4278 - Accuracy: 0.7062 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5547 | 0.99 | 63 | 0.5554 | 0.7062 | | 0.4303 | 1.99 | 127 | 0.4387 | 0.7079 | | 0.4377 | 2.96 | 189 | 0.4278 | 0.7062 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0