barnobarno666 commited on
Commit
37b2560
1 Parent(s): b81caab
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -207.20 +/- 110.11
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ecbb441f130>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ecbb441f1c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ecbb441f250>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ecbb441f2e0>", "_build": "<function ActorCriticPolicy._build at 0x7ecbb441f370>", "forward": "<function ActorCriticPolicy.forward at 0x7ecbb441f400>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ecbb441f490>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ecbb441f520>", "_predict": "<function ActorCriticPolicy._predict at 0x7ecbb441f5b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ecbb441f640>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ecbb441f6d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ecbb441f760>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ecbb441a600>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 16384, "_total_timesteps": 100, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689341681808000611, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIB8xT1lrEs/IxWMPqLXkr8w40i+K2kpvQAAAAAAAAAAZqnjPtjniT88lIE/SzA7v5EdWr8E8zS+AAAAAAAAAACqvqQ+AV24PjVr6z4T+p+/Pa0FvkpcAj4AAAAAAAAAADOYYD6IbhQ/WvErP56Mgb8uLhW/3bPQvgAAAAAAAAAABi1mPng8lj9aayM/X33uvuwpWL6pf4q8AAAAAAAAAACGr+E+azytP3JTSD/82AC/ps2HvZg7Sj4AAAAAAAAAAGaIcTwna7c/mQVAPzwr9D5mPpa8OZBJvgAAAAAAAAAA+ngFvrqzyD8Q+Mu+vCLmvUAtjT7edo0+AAAAAAAAAABWWBa/xt41PyvrWr+S9Im/9coUPxfIkT0AAAAAAAAAAIKv1r7Mcns+emU3v3nBkb+fOQA/Ii8gPgAAAAAAAAAABhhzv3GvMLv7A7y/K1fUvzdZrD/JtAQ/AAAAAAAAAAAT5I4+3PbDP4ULaz+CfAe+W2QEv8yNkb4AAAAAAAAAAKYxgT3kCpQ/iEL8PVaw2r5WHQa+eMymPQAAAAAAAAAAysZQvh/pgD+JxAm/FXcyv5P2ED6inCi8AAAAAAAAAAAFeaC+ugC1PioQtL7aHYC/gFtLvYJjSb4AAAAAAAAAAFMpZz7R6mo/HfsHP+bjSr8WAuC+XJIxvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -162.84, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGmL4FaB7NWMAWyUS3iMAXSUR0CSNfq3EyckdX2UKGgGR8B0f4/GEPDpaAdLgGgIR0CSNhmYSg5BdX2UKGgGR8B+KnS+g13uaAdLTGgIR0CSNioePq9odX2UKGgGR8BghUoBq9GraAdLQmgIR0CSNlHcUM5PdX2UKGgGR8BzmppqREF4aAdLcWgIR0CSNmSOBDohdX2UKGgGR8B2M9mJ3xFzaAdLY2gIR0CSNqfXwsoVdX2UKGgGR8BTQbmZE2HdaAdLSGgIR0CSNsamoBJadX2UKGgGR8BiD1JUYKplaAdLY2gIR0CSNwEBsANodX2UKGgGR8Bh3BFNL128aAdLZmgIR0CSNwFRpDeCdX2UKGgGR8BlHy2F36hyaAdLV2gIR0CSNw8HObAldX2UKGgGR8BuKyJuVHFxaAdLi2gIR0CSNxmFJxvOdX2UKGgGR8BqyFPepGWlaAdLd2gIR0CSNxpDeCTVdX2UKGgGR8BXOKCL/CIlaAdLYGgIR0CSNzHs1KoRdX2UKGgGR8BxZs0SAYpEaAdLdWgIR0CSNy7IkqtpdX2UKGgGR8B+ISM98qnWaAdLZGgIR0CSNy2aDwpfdX2UKGgGR8BbjQMUh3aBaAdLamgIR0CSNzCGN70GdX2UKGgGR8Buss3juKGdaAdLRWgIR0CSNz6po9LYdX2UKGgGR8BTtU/8l5WzaAdLUWgIR0CSNz1Aqur7dX2UKGgGR8BSWkqx1PnCaAdLOWgIR0CSNzp7kXDWdX2UKGgGR8BYgM5OrQw9aAdLXmgIR0CSN4VqesgddX2UKGgGR8BaeQNsnAqNaAdLS2gIR0CSN+i6g/TtdX2UKGgGR8B0If9LpRoAaAdLWWgIR0CSOAESM98rdX2UKGgGR8BknaoS+QEIaAdLP2gIR0CSOB0NjLB9dX2UKGgGR8BQSMF2V3UyaAdLR2gIR0CSOBwM6RyPdX2UKGgGR8Bzt7q9oN/faAdLO2gIR0CSOBoOx0MgdX2UKGgGR8BY/LeyiVSoaAdLR2gIR0CSOCYwZflZdX2UKGgGR8B1w8K/mDDkaAdLimgIR0CSOH961LJ0dX2UKGgGR8BR3CbMHKOlaAdLP2gIR0CSOH1q33HrdX2UKGgGR8BmcCXY150KaAdLV2gIR0CSOIZOBUaRdX2UKGgGR8BtorRnezlcaAdLaWgIR0CSOJs3Q2MsdX2UKGgGR0ARcI9kjHGTaAdLY2gIR0CSOJhXr+o+dX2UKGgGR8Bot/s3Q2MsaAdLYWgIR0CSOKYDTz/ZdX2UKGgGR8B8Qle0G/vfaAdLbmgIR0CSOK3QUpNLdX2UKGgGR8Bw9606YE4eaAdLbGgIR0CSOM2UjcEedX2UKGgGR8BRfuiWVu76aAdLb2gIR0CSONbcoH9ndX2UKGgGR8BZeeEug6EKaAdLQGgIR0CSORZEDyOJdX2UKGgGR8BpUjIFNcnmaAdLe2gIR0CSORB6a9bpdX2UKGgGR8Btsq2v0RODaAdLRGgIR0CSOSSIP9UCdX2UKGgGR8BeRq7EpAlfaAdLSmgIR0CSOThuwX67dX2UKGgGR8Bi11BF/hESaAdLUmgIR0CSOWkwN9YwdX2UKGgGR8BrwYkgOjIraAdLZWgIR0CSOZIg/1QJdX2UKGgGR8Bd0+Fg2IfsaAdLRWgIR0CSObKBd2PldX2UKGgGR8Bw/0T8HfMwaAdLWWgIR0CSOdwrDqGDdX2UKGgGR8BqHw4p+c6OaAdLiGgIR0CSOgTFVDKHdX2UKGgGR8BIs5qEeyRkaAdLX2gIR0CSOhDfWMCLdX2UKGgGR8B6Pm6BiCrcaAdLY2gIR0CSOg0NBnjAdX2UKGgGR8BW6obn5i3HaAdLRmgIR0CSOlRJVbRndX2UKGgGR8BswmM6zVtoaAdLcmgIR0CSOljW07bMdX2UKGgGR8BjAHOryUcGaAdLVmgIR0CSOmq20AtGdX2UKGgGR8BkfoouwosqaAdLa2gIR0CSOnenhsIndX2UKGgGR8Bc/6a5PM0QaAdLgmgIR0CSOoSTyJ9BdX2UKGgGR8BWvqUzKs+3aAdLd2gIR0CSOoPhhpg1dX2UKGgGR8BWyCnk1dgOaAdLW2gIR0CSOpQXAM2FdX2UKGgGR8BgQpjSXt0FaAdLRGgIR0CSOqAzYVZcdX2UKGgGR8BlEXP7el9CaAdLVmgIR0CSOrzBhx5tdX2UKGgGR8BqKPSUkfLcaAdLTGgIR0CSOt3JxNqQdX2UKGgGR8BrjsBsANobaAdLeWgIR0CSOvc81XNkdX2UKGgGR8Bm4BASnLq2aAdLimgIR0CSOvWpqASWdX2UKGgGR8BkA761stTUaAdLUGgIR0CSOxOi35N5dX2UKGgGR8BTs2cJ+lTFaAdLQ2gIR0CSOw+HrQgLdX2UKGgGR8BVuB4IKMNuaAdLQGgIR0CSO3A1ejVQdX2UKGgGR8Bdwm9US7GvaAdLRWgIR0CSO2zVtoBadX2UKGgGR8BclwIMSbpeaAdLR2gIR0CSO37QLNOedX2UKGgGR8Bwy7llsguAaAdLZGgIR0CSO4JGe+VUdX2UKGgGR8Bgy1urIYFaaAdLVmgIR0CSO5/UvwmWdX2UKGgGR8BtsrUTcqOMaAdLaWgIR0CSO6dEsrd4dX2UKGgGR8BeNI68xsVMaAdLU2gIR0CSO9GnGbTddX2UKGgGR8BSBOOwPiDNaAdLP2gIR0CSO9Bhx5s1dX2UKGgGR8BRqgEpy6tlaAdLVWgIR0CSPAOdoWYXdX2UKGgGR8BaRrs0HhS+aAdLXGgIR0CSPAC/oJRgdX2UKGgGR8BzkHEHdGiIaAdLaGgIR0CSPBBQemvXdX2UKGgGR8ByroVXV9WqaAdLdWgIR0CSPBpqREF4dX2UKGgGR8BdAjM/yGzsaAdLVGgIR0CSPDYBeXzEdX2UKGgGR8BV2kjPfKp2aAdLV2gIR0CSPFof0VafdX2UKGgGR8BwMq0tyxRmaAdLTmgIR0CSPK6o2n89dX2UKGgGR8BkuSqfe1rqaAdLcGgIR0CSPL7SRbKSdX2UKGgGR8B9zseq7yxzaAdLe2gIR0CSPMvIwM6SdX2UKGgGR8BCRhFmWdEtaAdLQmgIR0CSPMqWTot+dX2UKGgGR8BeT7ZrYXfqaAdLW2gIR0CSPNHYpUgkdX2UKGgGR8B3NmH58BuGaAdLZGgIR0CSPQCKaXrudX2UKGgGR8BRIDeoDPnkaAdLRWgIR0CSPQfoRqXXdX2UKGgGR8BjS+e8PFvRaAdLaWgIR0CSPQKKYRdydX2UKGgGR8B+/G/dqL0jaAdLVGgIR0CSPQ22Xsw+dX2UKGgGR8B1EhacI7eVaAdLSmgIR0CSPRilSCOFdX2UKGgGR8BhFYoAn2IwaAdLRmgIR0CSPT8DB/I9dX2UKGgGR8BqC4ywfQruaAdLb2gIR0CSPUssQNCrdX2UKGgGR8BxFJTR6WxAaAdLcmgIR0CSPU9q1w5vdX2UKGgGR8BgmEMTewcHaAdLX2gIR0CSPXouwosqdX2UKGgGR8By1R2fTTfBaAdLT2gIR0CSPYuBczIndX2UKGgGR8BVo9D+irT6aAdLbmgIR0CSPby6+WWydX2UKGgGR8BU6kVJtix3aAdLP2gIR0CSPfmI0qH5dX2UKGgGR8BV3SW7e2uxaAdLRmgIR0CSPg4Cp3otdX2UKGgGR8BS61H4GlhxaAdLWGgIR0CSPh5c1O0tdX2UKGgGR8BZFpU5uIhyaAdLRGgIR0CSPhY9gWrPdX2UKGgGR8BzEZDIBBAwaAdLZGgIR0CSPlW912aEdX2UKGgGR8BG1hhYvFm4aAdLa2gIR0CSPk/KhcqwdX2UKGgGR8B28kbNr0rcaAdLaGgIR0CSPmDEm6XjdX2UKGgGR8Bux9kc0cfeaAdLamgIR0CSPlw9q1w6dX2UKGgGR8Bre8yYXwb3aAdLV2gIR0CSPmtm+TNddX2UKGgGR8BZFOyiVSn+aAdLZ2gIR0CSPuAQg9vCdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.31 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:95f4673628c5f3832d8b47f0855cbc8908d084d24b9fc06588f6d034c727301b
3
+ size 146600
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7ecbb441f130>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ecbb441f1c0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ecbb441f250>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ecbb441f2e0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7ecbb441f370>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7ecbb441f400>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ecbb441f490>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ecbb441f520>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7ecbb441f5b0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ecbb441f640>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ecbb441f6d0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ecbb441f760>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7ecbb441a600>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 16384,
25
+ "_total_timesteps": 100,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1689341681808000611,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIB8xT1lrEs/IxWMPqLXkr8w40i+K2kpvQAAAAAAAAAAZqnjPtjniT88lIE/SzA7v5EdWr8E8zS+AAAAAAAAAACqvqQ+AV24PjVr6z4T+p+/Pa0FvkpcAj4AAAAAAAAAADOYYD6IbhQ/WvErP56Mgb8uLhW/3bPQvgAAAAAAAAAABi1mPng8lj9aayM/X33uvuwpWL6pf4q8AAAAAAAAAACGr+E+azytP3JTSD/82AC/ps2HvZg7Sj4AAAAAAAAAAGaIcTwna7c/mQVAPzwr9D5mPpa8OZBJvgAAAAAAAAAA+ngFvrqzyD8Q+Mu+vCLmvUAtjT7edo0+AAAAAAAAAABWWBa/xt41PyvrWr+S9Im/9coUPxfIkT0AAAAAAAAAAIKv1r7Mcns+emU3v3nBkb+fOQA/Ii8gPgAAAAAAAAAABhhzv3GvMLv7A7y/K1fUvzdZrD/JtAQ/AAAAAAAAAAAT5I4+3PbDP4ULaz+CfAe+W2QEv8yNkb4AAAAAAAAAAKYxgT3kCpQ/iEL8PVaw2r5WHQa+eMymPQAAAAAAAAAAysZQvh/pgD+JxAm/FXcyv5P2ED6inCi8AAAAAAAAAAAFeaC+ugC1PioQtL7aHYC/gFtLvYJjSb4AAAAAAAAAAFMpZz7R6mo/HfsHP+bjSr8WAuC+XJIxvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -162.84,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGmL4FaB7NWMAWyUS3iMAXSUR0CSNfq3EyckdX2UKGgGR8B0f4/GEPDpaAdLgGgIR0CSNhmYSg5BdX2UKGgGR8B+KnS+g13uaAdLTGgIR0CSNioePq9odX2UKGgGR8BghUoBq9GraAdLQmgIR0CSNlHcUM5PdX2UKGgGR8BzmppqREF4aAdLcWgIR0CSNmSOBDohdX2UKGgGR8B2M9mJ3xFzaAdLY2gIR0CSNqfXwsoVdX2UKGgGR8BTQbmZE2HdaAdLSGgIR0CSNsamoBJadX2UKGgGR8BiD1JUYKplaAdLY2gIR0CSNwEBsANodX2UKGgGR8Bh3BFNL128aAdLZmgIR0CSNwFRpDeCdX2UKGgGR8BlHy2F36hyaAdLV2gIR0CSNw8HObAldX2UKGgGR8BuKyJuVHFxaAdLi2gIR0CSNxmFJxvOdX2UKGgGR8BqyFPepGWlaAdLd2gIR0CSNxpDeCTVdX2UKGgGR8BXOKCL/CIlaAdLYGgIR0CSNzHs1KoRdX2UKGgGR8BxZs0SAYpEaAdLdWgIR0CSNy7IkqtpdX2UKGgGR8B+ISM98qnWaAdLZGgIR0CSNy2aDwpfdX2UKGgGR8BbjQMUh3aBaAdLamgIR0CSNzCGN70GdX2UKGgGR8Buss3juKGdaAdLRWgIR0CSNz6po9LYdX2UKGgGR8BTtU/8l5WzaAdLUWgIR0CSNz1Aqur7dX2UKGgGR8BSWkqx1PnCaAdLOWgIR0CSNzp7kXDWdX2UKGgGR8BYgM5OrQw9aAdLXmgIR0CSN4VqesgddX2UKGgGR8BaeQNsnAqNaAdLS2gIR0CSN+i6g/TtdX2UKGgGR8B0If9LpRoAaAdLWWgIR0CSOAESM98rdX2UKGgGR8BknaoS+QEIaAdLP2gIR0CSOB0NjLB9dX2UKGgGR8BQSMF2V3UyaAdLR2gIR0CSOBwM6RyPdX2UKGgGR8Bzt7q9oN/faAdLO2gIR0CSOBoOx0MgdX2UKGgGR8BY/LeyiVSoaAdLR2gIR0CSOCYwZflZdX2UKGgGR8B1w8K/mDDkaAdLimgIR0CSOH961LJ0dX2UKGgGR8BR3CbMHKOlaAdLP2gIR0CSOH1q33HrdX2UKGgGR8BmcCXY150KaAdLV2gIR0CSOIZOBUaRdX2UKGgGR8BtorRnezlcaAdLaWgIR0CSOJs3Q2MsdX2UKGgGR0ARcI9kjHGTaAdLY2gIR0CSOJhXr+o+dX2UKGgGR8Bot/s3Q2MsaAdLYWgIR0CSOKYDTz/ZdX2UKGgGR8B8Qle0G/vfaAdLbmgIR0CSOK3QUpNLdX2UKGgGR8Bw9606YE4eaAdLbGgIR0CSOM2UjcEedX2UKGgGR8BRfuiWVu76aAdLb2gIR0CSONbcoH9ndX2UKGgGR8BZeeEug6EKaAdLQGgIR0CSORZEDyOJdX2UKGgGR8BpUjIFNcnmaAdLe2gIR0CSORB6a9bpdX2UKGgGR8Btsq2v0RODaAdLRGgIR0CSOSSIP9UCdX2UKGgGR8BeRq7EpAlfaAdLSmgIR0CSOThuwX67dX2UKGgGR8Bi11BF/hESaAdLUmgIR0CSOWkwN9YwdX2UKGgGR8BrwYkgOjIraAdLZWgIR0CSOZIg/1QJdX2UKGgGR8Bd0+Fg2IfsaAdLRWgIR0CSObKBd2PldX2UKGgGR8Bw/0T8HfMwaAdLWWgIR0CSOdwrDqGDdX2UKGgGR8BqHw4p+c6OaAdLiGgIR0CSOgTFVDKHdX2UKGgGR8BIs5qEeyRkaAdLX2gIR0CSOhDfWMCLdX2UKGgGR8B6Pm6BiCrcaAdLY2gIR0CSOg0NBnjAdX2UKGgGR8BW6obn5i3HaAdLRmgIR0CSOlRJVbRndX2UKGgGR8BswmM6zVtoaAdLcmgIR0CSOljW07bMdX2UKGgGR8BjAHOryUcGaAdLVmgIR0CSOmq20AtGdX2UKGgGR8BkfoouwosqaAdLa2gIR0CSOnenhsIndX2UKGgGR8Bc/6a5PM0QaAdLgmgIR0CSOoSTyJ9BdX2UKGgGR8BWvqUzKs+3aAdLd2gIR0CSOoPhhpg1dX2UKGgGR8BWyCnk1dgOaAdLW2gIR0CSOpQXAM2FdX2UKGgGR8BgQpjSXt0FaAdLRGgIR0CSOqAzYVZcdX2UKGgGR8BlEXP7el9CaAdLVmgIR0CSOrzBhx5tdX2UKGgGR8BqKPSUkfLcaAdLTGgIR0CSOt3JxNqQdX2UKGgGR8BrjsBsANobaAdLeWgIR0CSOvc81XNkdX2UKGgGR8Bm4BASnLq2aAdLimgIR0CSOvWpqASWdX2UKGgGR8BkA761stTUaAdLUGgIR0CSOxOi35N5dX2UKGgGR8BTs2cJ+lTFaAdLQ2gIR0CSOw+HrQgLdX2UKGgGR8BVuB4IKMNuaAdLQGgIR0CSO3A1ejVQdX2UKGgGR8Bdwm9US7GvaAdLRWgIR0CSO2zVtoBadX2UKGgGR8BclwIMSbpeaAdLR2gIR0CSO37QLNOedX2UKGgGR8Bwy7llsguAaAdLZGgIR0CSO4JGe+VUdX2UKGgGR8Bgy1urIYFaaAdLVmgIR0CSO5/UvwmWdX2UKGgGR8BtsrUTcqOMaAdLaWgIR0CSO6dEsrd4dX2UKGgGR8BeNI68xsVMaAdLU2gIR0CSO9GnGbTddX2UKGgGR8BSBOOwPiDNaAdLP2gIR0CSO9Bhx5s1dX2UKGgGR8BRqgEpy6tlaAdLVWgIR0CSPAOdoWYXdX2UKGgGR8BaRrs0HhS+aAdLXGgIR0CSPAC/oJRgdX2UKGgGR8BzkHEHdGiIaAdLaGgIR0CSPBBQemvXdX2UKGgGR8ByroVXV9WqaAdLdWgIR0CSPBpqREF4dX2UKGgGR8BdAjM/yGzsaAdLVGgIR0CSPDYBeXzEdX2UKGgGR8BV2kjPfKp2aAdLV2gIR0CSPFof0VafdX2UKGgGR8BwMq0tyxRmaAdLTmgIR0CSPK6o2n89dX2UKGgGR8BkuSqfe1rqaAdLcGgIR0CSPL7SRbKSdX2UKGgGR8B9zseq7yxzaAdLe2gIR0CSPMvIwM6SdX2UKGgGR8BCRhFmWdEtaAdLQmgIR0CSPMqWTot+dX2UKGgGR8BeT7ZrYXfqaAdLW2gIR0CSPNHYpUgkdX2UKGgGR8B3NmH58BuGaAdLZGgIR0CSPQCKaXrudX2UKGgGR8BRIDeoDPnkaAdLRWgIR0CSPQfoRqXXdX2UKGgGR8BjS+e8PFvRaAdLaWgIR0CSPQKKYRdydX2UKGgGR8B+/G/dqL0jaAdLVGgIR0CSPQ22Xsw+dX2UKGgGR8B1EhacI7eVaAdLSmgIR0CSPRilSCOFdX2UKGgGR8BhFYoAn2IwaAdLRmgIR0CSPT8DB/I9dX2UKGgGR8BqC4ywfQruaAdLb2gIR0CSPUssQNCrdX2UKGgGR8BxFJTR6WxAaAdLcmgIR0CSPU9q1w5vdX2UKGgGR8BgmEMTewcHaAdLX2gIR0CSPXouwosqdX2UKGgGR8By1R2fTTfBaAdLT2gIR0CSPYuBczIndX2UKGgGR8BVo9D+irT6aAdLbmgIR0CSPby6+WWydX2UKGgGR8BU6kVJtix3aAdLP2gIR0CSPfmI0qH5dX2UKGgGR8BV3SW7e2uxaAdLRmgIR0CSPg4Cp3otdX2UKGgGR8BS61H4GlhxaAdLWGgIR0CSPh5c1O0tdX2UKGgGR8BZFpU5uIhyaAdLRGgIR0CSPhY9gWrPdX2UKGgGR8BzEZDIBBAwaAdLZGgIR0CSPlW912aEdX2UKGgGR8BG1hhYvFm4aAdLa2gIR0CSPk/KhcqwdX2UKGgGR8B28kbNr0rcaAdLaGgIR0CSPmDEm6XjdX2UKGgGR8Bux9kc0cfeaAdLamgIR0CSPlw9q1w6dX2UKGgGR8Bre8yYXwb3aAdLV2gIR0CSPmtm+TNddX2UKGgGR8BZFOyiVSn+aAdLZ2gIR0CSPuAQg9vCdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 4,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ffacd7b521daed6c4327cbeeaf1f8068fe8c14b8dbfb5106ecc383db29f4d849
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f0bce6fbcd4f9eba416828c9b6fadef48bce896dd2ec158f7c44ee9dcb6ad3b1
3
+ size 43329
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.31 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (214 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -207.1961501577636, "std_reward": 110.10731179000211, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-14T13:44:57.973393"}