File size: 12,354 Bytes
ee4b39e
 
 
 
 
 
 
fd0e0ec
ee4b39e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd0e0ec
 
 
 
 
ee4b39e
fd0e0ec
 
ee4b39e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
---
license: other
license_name: llama-3
license_link: https://llama.meta.com/llama3/license/
tags:
- text-generation-inference
- transformers

- unsloth
- llama
datasets:
- Replete-AI/code_bagel_hermes-2.5
- Replete-AI/code_bagel
- Replete-AI/OpenHermes-2.5-Uncensored
- teknium/OpenHermes-2.5
- layoric/tiny-codes-alpaca
- glaiveai/glaive-code-assistant-v3
- ajibawa-2023/Code-290k-ShareGPT
- TIGER-Lab/MathInstruct
- chargoddard/commitpack-ft-instruct-rated
- iamturun/code_instructions_120k_alpaca
- ise-uiuc/Magicoder-Evol-Instruct-110K
- cognitivecomputations/dolphin-coder
- nickrosh/Evol-Instruct-Code-80k-v1
- coseal/CodeUltraFeedback_binarized
- glaiveai/glaive-function-calling-v2
- CyberNative/Code_Vulnerability_Security_DPO
- jondurbin/airoboros-2.2
- camel-ai
- lmsys/lmsys-chat-1m
- CollectiveCognition/chats-data-2023-09-22
- CoT-Alpaca-GPT4
- WizardLM/WizardLM_evol_instruct_70k
- WizardLM/WizardLM_evol_instruct_V2_196k
- teknium/GPT4-LLM-Cleaned
- GPTeacher
- OpenGPT
- meta-math/MetaMathQA
- Open-Orca/SlimOrca
- garage-bAInd/Open-Platypus
- anon8231489123/ShareGPT_Vicuna_unfiltered
- Unnatural-Instructions-GPT4
model-index:
- name: Replete-Coder-llama3-8b
  results:
  - task:
      name: HumanEval
      type: text-generation
    dataset:
      type: openai_humaneval
      name: HumanEval
    metrics:
    - name: pass@1
      type: pass@1
      value: 
      verified: false
  - task:
      name: AI2 Reasoning Challenge
      type: text-generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: accuracy
      value: 
      name: normalized accuracy
    source:
      url: https://www.placeholderurl.com
      name: Open LLM Leaderboard
  - task:
      name: Text Generation
      type: text-generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: accuracy
      value: 
      name: normalized accuracy
    source:
      url: https://www.placeholderurl.com
      name: Open LLM Leaderboard
  - task:
      name: Text Generation
      type: text-generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: accuracy
      value: 
      name: accuracy
    source:
      url: https://www.placeholderurl.com
      name: Open LLM Leaderboard
  - task:
      name: Text Generation
      type: text-generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: multiple_choice_accuracy
      value: 
    source:
      url: https://www.placeholderurl.com
      name: Open LLM Leaderboard
  - task:
      name: Text Generation
      type: text-generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: accuracy
      value: 
      name: accuracy
    source:
      url: https://www.placeholderurl.com
      name: Open LLM Leaderboard
  - task:
      name: Text Generation
      type: text-generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: accuracy
      value: 
      name: accuracy
    source:
      url: https://www.placeholderurl.com
      name: Open LLM Leaderboard
quantized_by: bartowski
pipeline_tag: text-generation
---

## Llamacpp imatrix Quantizations of Replete-Coder-Llama3-8B

Using <a href="https://github.com/ggerganov/llama.cpp/">llama.cpp</a> release <a href="https://github.com/ggerganov/llama.cpp/releases/tag/b3197">b3197</a> for quantization.

Original model: https://huggingface.co/Replete-AI/Replete-Coder-Llama3-8B

All quants made using imatrix option with dataset from [here](https://gist.github.com/bartowski1182/eb213dccb3571f863da82e99418f81e8)

## Prompt format

```
### System:
{}

### Instruction:
{}

### Response:
{}
```

## Download a file (not the whole branch) from below:

| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [Replete-Coder-Llama3-8B-Q8_0_L.gguf](https://huggingface.co/bartowski/Replete-Coder-Llama3-8B-GGUF/blob/main/Replete-Coder-Llama3-8B-Q8_1.gguf) | Q8_0_L | 9.52GB | *Experimental*, uses f16 for embed and output weights. Please provide any feedback of differences. Extremely high quality, generally unneeded but max available quant. |
| [Replete-Coder-Llama3-8B-Q8_0.gguf](https://huggingface.co/bartowski/Replete-Coder-Llama3-8B-GGUF/blob/main/Replete-Coder-Llama3-8B-Q8_0.gguf) | Q8_0 | 8.54GB | Extremely high quality, generally unneeded but max available quant. |
| [Replete-Coder-Llama3-8B-Q6_K_L.gguf](https://huggingface.co/bartowski/Replete-Coder-Llama3-8B-GGUF/blob/main/Replete-Coder-Llama3-8B-Q6_K_L.gguf) | Q6_K_L | 7.83GB | *Experimental*, uses f16 for embed and output weights. Please provide any feedback of differences. Very high quality, near perfect, *recommended*. |
| [Replete-Coder-Llama3-8B-Q6_K.gguf](https://huggingface.co/bartowski/Replete-Coder-Llama3-8B-GGUF/blob/main/Replete-Coder-Llama3-8B-Q6_K.gguf) | Q6_K | 6.59GB | Very high quality, near perfect, *recommended*. |
| [Replete-Coder-Llama3-8B-Q5_K_L.gguf](https://huggingface.co/bartowski/Replete-Coder-Llama3-8B-GGUF/blob/main/Replete-Coder-Llama3-8B-Q5_K_L.gguf) | Q5_K_L | 7.04GB | *Experimental*, uses f16 for embed and output weights. Please provide any feedback of differences. High quality, *recommended*. |
| [Replete-Coder-Llama3-8B-Q5_K_M.gguf](https://huggingface.co/bartowski/Replete-Coder-Llama3-8B-GGUF/blob/main/Replete-Coder-Llama3-8B-Q5_K_M.gguf) | Q5_K_M | 5.73GB | High quality, *recommended*. |
| [Replete-Coder-Llama3-8B-Q5_K_S.gguf](https://huggingface.co/bartowski/Replete-Coder-Llama3-8B-GGUF/blob/main/Replete-Coder-Llama3-8B-Q5_K_S.gguf) | Q5_K_S | 5.59GB | High quality, *recommended*. |
| [Replete-Coder-Llama3-8B-Q4_K_L.gguf](https://huggingface.co/bartowski/Replete-Coder-Llama3-8B-GGUF/blob/main/Replete-Coder-Llama3-8B-Q4_K_L.gguf) | Q4_K_L | 6.29GB | *Experimental*, uses f16 for embed and output weights. Please provide any feedback of differences. Good quality, uses about 4.83 bits per weight, *recommended*. |
| [Replete-Coder-Llama3-8B-Q4_K_M.gguf](https://huggingface.co/bartowski/Replete-Coder-Llama3-8B-GGUF/blob/main/Replete-Coder-Llama3-8B-Q4_K_M.gguf) | Q4_K_M | 4.92GB | Good quality, uses about 4.83 bits per weight, *recommended*. |
| [Replete-Coder-Llama3-8B-Q4_K_S.gguf](https://huggingface.co/bartowski/Replete-Coder-Llama3-8B-GGUF/blob/main/Replete-Coder-Llama3-8B-Q4_K_S.gguf) | Q4_K_S | 4.69GB | Slightly lower quality with more space savings, *recommended*. |
| [Replete-Coder-Llama3-8B-IQ4_XS.gguf](https://huggingface.co/bartowski/Replete-Coder-Llama3-8B-GGUF/blob/main/Replete-Coder-Llama3-8B-IQ4_XS.gguf) | IQ4_XS | 4.44GB | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. |
| [Replete-Coder-Llama3-8B-Q3_K_XL.gguf](https://huggingface.co/bartowski/Replete-Coder-Llama3-8B-GGUF//main/Replete-Coder-Llama3-8B-Q3_K_XL.gguf) | Q3_K_XL |  | *Experimental*, uses f16 for embed and output weights. Please provide any feedback of differences. Lower quality but usable, good for low RAM availability. |
| [Replete-Coder-Llama3-8B-Q3_K_L.gguf](https://huggingface.co/bartowski/Replete-Coder-Llama3-8B-GGUF/blob/main/Replete-Coder-Llama3-8B-Q3_K_L.gguf) | Q3_K_L | 4.32GB | Lower quality but usable, good for low RAM availability. |
| [Replete-Coder-Llama3-8B-Q3_K_M.gguf](https://huggingface.co/bartowski/Replete-Coder-Llama3-8B-GGUF/blob/main/Replete-Coder-Llama3-8B-Q3_K_M.gguf) | Q3_K_M | 4.01GB | Even lower quality. |
| [Replete-Coder-Llama3-8B-IQ3_M.gguf](https://huggingface.co/bartowski/Replete-Coder-Llama3-8B-GGUF/blob/main/Replete-Coder-Llama3-8B-IQ3_M.gguf) | IQ3_M | 3.78GB | Medium-low quality, new method with decent performance comparable to Q3_K_M. |
| [Replete-Coder-Llama3-8B-Q3_K_S.gguf](https://huggingface.co/bartowski/Replete-Coder-Llama3-8B-GGUF/blob/main/Replete-Coder-Llama3-8B-Q3_K_S.gguf) | Q3_K_S | 3.66GB | Low quality, not recommended. |
| [Replete-Coder-Llama3-8B-IQ3_XS.gguf](https://huggingface.co/bartowski/Replete-Coder-Llama3-8B-GGUF/blob/main/Replete-Coder-Llama3-8B-IQ3_XS.gguf) | IQ3_XS | 3.51GB | Lower quality, new method with decent performance, slightly better than Q3_K_S. |
| [Replete-Coder-Llama3-8B-IQ3_XXS.gguf](https://huggingface.co/bartowski/Replete-Coder-Llama3-8B-GGUF/blob/main/Replete-Coder-Llama3-8B-IQ3_XXS.gguf) | IQ3_XXS | 3.27GB | Lower quality, new method with decent performance, comparable to Q3 quants. |
| [Replete-Coder-Llama3-8B-Q2_K.gguf](https://huggingface.co/bartowski/Replete-Coder-Llama3-8B-GGUF/blob/main/Replete-Coder-Llama3-8B-Q2_K.gguf) | Q2_K | 3.17GB | Very low quality but surprisingly usable. |
| [Replete-Coder-Llama3-8B-IQ2_M.gguf](https://huggingface.co/bartowski/Replete-Coder-Llama3-8B-GGUF/blob/main/Replete-Coder-Llama3-8B-IQ2_M.gguf) | IQ2_M | 2.94GB | Very low quality, uses SOTA techniques to also be surprisingly usable. |
| [Replete-Coder-Llama3-8B-IQ2_S.gguf](https://huggingface.co/bartowski/Replete-Coder-Llama3-8B-GGUF/blob/main/Replete-Coder-Llama3-8B-IQ2_S.gguf) | IQ2_S | 2.75GB | Very low quality, uses SOTA techniques to be usable. |
| [Replete-Coder-Llama3-8B-IQ2_XS.gguf](https://huggingface.co/bartowski/Replete-Coder-Llama3-8B-GGUF/blob/main/Replete-Coder-Llama3-8B-IQ2_XS.gguf) | IQ2_XS | 2.60GB | Very low quality, uses SOTA techniques to be usable. |

## Downloading using huggingface-cli

First, make sure you have hugginface-cli installed:

```
pip install -U "huggingface_hub[cli]"
```

Then, you can target the specific file you want:

```
huggingface-cli download bartowski/Replete-Coder-Llama3-8B-GGUF --include "Replete-Coder-Llama3-8B-Q4_K_M.gguf" --local-dir ./
```

If the model is bigger than 50GB, it will have been split into multiple files. In order to download them all to a local folder, run:

```
huggingface-cli download bartowski/Replete-Coder-Llama3-8B-GGUF --include "Replete-Coder-Llama3-8B-Q8_0.gguf/*" --local-dir Replete-Coder-Llama3-8B-Q8_0
```

You can either specify a new local-dir (Replete-Coder-Llama3-8B-Q8_0) or download them all in place (./)

## Which file should I choose?

A great write up with charts showing various performances is provided by Artefact2 [here](https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9)

The first thing to figure out is how big a model you can run. To do this, you'll need to figure out how much RAM and/or VRAM you have.

If you want your model running as FAST as possible, you'll want to fit the whole thing on your GPU's VRAM. Aim for a quant with a file size 1-2GB smaller than your GPU's total VRAM.

If you want the absolute maximum quality, add both your system RAM and your GPU's VRAM together, then similarly grab a quant with a file size 1-2GB Smaller than that total.

Next, you'll need to decide if you want to use an 'I-quant' or a 'K-quant'.

If you don't want to think too much, grab one of the K-quants. These are in format 'QX_K_X', like Q5_K_M.

If you want to get more into the weeds, you can check out this extremely useful feature chart:

[llama.cpp feature matrix](https://github.com/ggerganov/llama.cpp/wiki/Feature-matrix)

But basically, if you're aiming for below Q4, and you're running cuBLAS (Nvidia) or rocBLAS (AMD), you should look towards the I-quants. These are in format IQX_X, like IQ3_M. These are newer and offer better performance for their size.

These I-quants can also be used on CPU and Apple Metal, but will be slower than their K-quant equivalent, so speed vs performance is a tradeoff you'll have to decide.

The I-quants are *not* compatible with Vulcan, which is also AMD, so if you have an AMD card double check if you're using the rocBLAS build or the Vulcan build. At the time of writing this, LM Studio has a preview with ROCm support, and other inference engines have specific builds for ROCm.

Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski