Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +95 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -2.55 +/- 0.85
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e98ad0cfba2d8a13a6feb26889e1ae8019d26bca4b993ba908471eca1596cd11
|
3 |
+
size 107808
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fde91189870>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fde91187380>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1684332635463805596,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"lr_schedule": {
|
31 |
+
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
33 |
+
},
|
34 |
+
"_last_obs": {
|
35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA5W7VPlJQ6zqHiwM/5W7VPlJQ6zqHiwM/5W7VPlJQ6zqHiwM/5W7VPlJQ6zqHiwM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAADz/evpTNjb+9UsE/rnaqvtmfpj7bnbk/bqOcPn7nNr/Reqw9pX9CvXb9uz3RJis/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADlbtU+UlDrOoeLAz9YXuS7c4WdOyvz6zvlbtU+UlDrOoeLAz9YXuS7c4WdOyvz6zvlbtU+UlDrOoeLAz9YXuS7c4WdOyvz6zvlbtU+UlDrOoeLAz9YXuS7c4WdOyvz6zuUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[0.41686168 0.0017953 0.51384777]\n [0.41686168 0.0017953 0.51384777]\n [0.41686168 0.0017953 0.51384777]\n [0.41686168 0.0017953 0.51384777]]",
|
38 |
+
"desired_goal": "[[-0.43407485 -1.1078362 1.5103375 ]\n [-0.3329367 0.3254383 1.4501299 ]\n [ 0.30593437 -0.7144698 0.08421863]\n [-0.04748501 0.09179203 0.66856104]]",
|
39 |
+
"observation": "[[ 0.41686168 0.0017953 0.51384777 -0.00696925 0.00480717 0.00720062]\n [ 0.41686168 0.0017953 0.51384777 -0.00696925 0.00480717 0.00720062]\n [ 0.41686168 0.0017953 0.51384777 -0.00696925 0.00480717 0.00720062]\n [ 0.41686168 0.0017953 0.51384777 -0.00696925 0.00480717 0.00720062]]"
|
40 |
+
},
|
41 |
+
"_last_episode_starts": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_last_original_obs": {
|
46 |
+
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAKoOuPYrhi70OFI0+kAwUvoDJvz3omlo+RTz8PTMTEb5d0Ck+7sjJPVRpmb08hQI9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[ 0.08521111 -0.06830128 0.27554363]\n [-0.14457917 0.09364605 0.21348155]\n [ 0.12316183 -0.1416748 0.1658339 ]\n [ 0.09852777 -0.07490793 0.03186534]]",
|
50 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
+
},
|
52 |
+
"_episode_num": 0,
|
53 |
+
"use_sde": false,
|
54 |
+
"sde_sample_freq": -1,
|
55 |
+
"_current_progress_remaining": 0.0,
|
56 |
+
"_stats_window_size": 100,
|
57 |
+
"ep_info_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIhdIXQs6bE8CUhpRSlIwBbJRLMowBdJRHQKIsLqX4TK11fZQoaAZoCWgPQwgnS633G60FwJSGlFKUaBVLMmgWR0CiK9LoW56MdX2UKGgGaAloD0MI+tLbn4uGCcCUhpRSlGgVSzJoFkdAoit1Ed/8VHV9lChoBmgJaA9DCCgn2lVIOQPAlIaUUpRoFUsyaBZHQKIrGzPa+N91fZQoaAZoCWgPQwjpnJ/iOJAAwJSGlFKUaBVLMmgWR0CiLXKDCgscdX2UKGgGaAloD0MIF/GdmPUCBsCUhpRSlGgVSzJoFkdAoi0WxD9fkXV9lChoBmgJaA9DCCE82jhi3RPAlIaUUpRoFUsyaBZHQKIsuMPz4Dd1fZQoaAZoCWgPQwiRCfg1ksT/v5SGlFKUaBVLMmgWR0CiLF8ZDRdAdX2UKGgGaAloD0MIameY2lKnE8CUhpRSlGgVSzJoFkdAoi6u9eyAx3V9lChoBmgJaA9DCJWbqKW5lQnAlIaUUpRoFUsyaBZHQKIuU1rIo3J1fZQoaAZoCWgPQwhm22lrRAAUwJSGlFKUaBVLMmgWR0CiLfWYnfEXdX2UKGgGaAloD0MIycwFLo+1DMCUhpRSlGgVSzJoFkdAoi2bpTuOTHV9lChoBmgJaA9DCLU3+MJkKhbAlIaUUpRoFUsyaBZHQKIv9qzJIUd1fZQoaAZoCWgPQwgIqkavBqgCwJSGlFKUaBVLMmgWR0CiL5sR6F/QdX2UKGgGaAloD0MIQu4iTFFeEsCUhpRSlGgVSzJoFkdAoi89cpsoD3V9lChoBmgJaA9DCJBOXfks7wPAlIaUUpRoFUsyaBZHQKIu43hGYrt1fZQoaAZoCWgPQwgXfnA+dYwQwJSGlFKUaBVLMmgWR0CiMTGRvFWGdX2UKGgGaAloD0MIsaVHUz1ZFMCUhpRSlGgVSzJoFkdAojDVnqVyFXV9lChoBmgJaA9DCB1VTRB1fxDAlIaUUpRoFUsyaBZHQKIwdynUDuB1fZQoaAZoCWgPQwgzbf/KSpMSwJSGlFKUaBVLMmgWR0CiMBzKDCgsdX2UKGgGaAloD0MIYhHDDmPiGcCUhpRSlGgVSzJoFkdAojH/0Eovz3V9lChoBmgJaA9DCO3YCMTrehrAlIaUUpRoFUsyaBZHQKIxo6bONYN1fZQoaAZoCWgPQwh1d50N+ZcQwJSGlFKUaBVLMmgWR0CiMUVurIYFdX2UKGgGaAloD0MIx2Xc1EBjGMCUhpRSlGgVSzJoFkdAojDrBdld1XV9lChoBmgJaA9DCLFR1m8mdhHAlIaUUpRoFUsyaBZHQKIy0ZrpJPJ1fZQoaAZoCWgPQwhz2eicn1IRwJSGlFKUaBVLMmgWR0CiMnV/tpmFdX2UKGgGaAloD0MIrkoi+yCrFMCUhpRSlGgVSzJoFkdAojIXPmganHV9lChoBmgJaA9DCBaJCWr4dhDAlIaUUpRoFUsyaBZHQKIxvQbdadN1fZQoaAZoCWgPQwiDv1/MluwEwJSGlFKUaBVLMmgWR0CiM5KiGnGbdX2UKGgGaAloD0MIFF6CUx8oBsCUhpRSlGgVSzJoFkdAojM2mNzbOHV9lChoBmgJaA9DCCBGCI82jgDAlIaUUpRoFUsyaBZHQKIy2EYfnwJ1fZQoaAZoCWgPQwiLGkzD8IETwJSGlFKUaBVLMmgWR0CiMn32EkB0dX2UKGgGaAloD0MIaxDmdi83/L+UhpRSlGgVSzJoFkdAojRvU4JeFHV9lChoBmgJaA9DCGB2Tx4W6g/AlIaUUpRoFUsyaBZHQKI0Ex2St/51fZQoaAZoCWgPQwitMeiE0MELwJSGlFKUaBVLMmgWR0CiM7TijtXxdX2UKGgGaAloD0MIrWpJRzmYDcCUhpRSlGgVSzJoFkdAojNamfoRqXV9lChoBmgJaA9DCCKq8Gd4kwvAlIaUUpRoFUsyaBZHQKI1QJ+lTFV1fZQoaAZoCWgPQwgld9hEZm4XwJSGlFKUaBVLMmgWR0CiNOSydFvydX2UKGgGaAloD0MIjUEnhA7aB8CUhpRSlGgVSzJoFkdAojSGdVea8nV9lChoBmgJaA9DCGVVhJuMigzAlIaUUpRoFUsyaBZHQKI0LAPd2xJ1fZQoaAZoCWgPQwiFeY8zTYgRwJSGlFKUaBVLMmgWR0CiNhsQVbiZdX2UKGgGaAloD0MIHTuoxHV8EcCUhpRSlGgVSzJoFkdAojW+7Wd3CHV9lChoBmgJaA9DCGed8X1x6QzAlIaUUpRoFUsyaBZHQKI1YKMNtqJ1fZQoaAZoCWgPQwjLS/4nf5cOwJSGlFKUaBVLMmgWR0CiNQZqM3qBdX2UKGgGaAloD0MIGHlZEws8D8CUhpRSlGgVSzJoFkdAojb2Btk4FXV9lChoBmgJaA9DCG77HvXXCw3AlIaUUpRoFUsyaBZHQKI2mgwoLG91fZQoaAZoCWgPQwhlbr4R3ZMPwJSGlFKUaBVLMmgWR0CiNjvRzBAOdX2UKGgGaAloD0MI9ifxuRNsA8CUhpRSlGgVSzJoFkdAojXhpeu3dHV9lChoBmgJaA9DCPHxCdl5KxHAlIaUUpRoFUsyaBZHQKI31KmsNlR1fZQoaAZoCWgPQwjkEHFzKrkAwJSGlFKUaBVLMmgWR0CiN3inYQJ5dX2UKGgGaAloD0MIOQ8nMJ2WBcCUhpRSlGgVSzJoFkdAojcaHO8kEHV9lChoBmgJaA9DCDdV98jmigDAlIaUUpRoFUsyaBZHQKI2v82Jiy91fZQoaAZoCWgPQwgvbTgsDSwVwJSGlFKUaBVLMmgWR0CiOK+XzDoAdX2UKGgGaAloD0MILnB5rBnZCMCUhpRSlGgVSzJoFkdAojhTj7yhBnV9lChoBmgJaA9DCFw9J71vPAjAlIaUUpRoFUsyaBZHQKI39VzZHut1fZQoaAZoCWgPQwiA7zZvnIQRwJSGlFKUaBVLMmgWR0CiN5sfq5bydX2UKGgGaAloD0MIixcLQ+Q0AcCUhpRSlGgVSzJoFkdAojmNz+3pfXV9lChoBmgJaA9DCNXt7CsPwhDAlIaUUpRoFUsyaBZHQKI5MZxaPjp1fZQoaAZoCWgPQwjVA+YhU04UwJSGlFKUaBVLMmgWR0CiONMvysjndX2UKGgGaAloD0MICU59IHmn/b+UhpRSlGgVSzJoFkdAojh49C/oJXV9lChoBmgJaA9DCNnQzf5AGQHAlIaUUpRoFUsyaBZHQKI6aS2Yv391fZQoaAZoCWgPQwho0NA/wbURwJSGlFKUaBVLMmgWR0CiOg0Yj0L/dX2UKGgGaAloD0MI53KDoQ4LDMCUhpRSlGgVSzJoFkdAojmuruIAO3V9lChoBmgJaA9DCFj/5zBfjhDAlIaUUpRoFUsyaBZHQKI5VFl05lx1fZQoaAZoCWgPQwhf7SjOUUcIwJSGlFKUaBVLMmgWR0CiO0gow22odX2UKGgGaAloD0MI8RDGT+P+A8CUhpRSlGgVSzJoFkdAojrsMgEEDHV9lChoBmgJaA9DCGmM1lHV5A3AlIaUUpRoFUsyaBZHQKI6jgTh5xB1fZQoaAZoCWgPQwgD0Chd+tcIwJSGlFKUaBVLMmgWR0CiOjPUKArhdX2UKGgGaAloD0MIzQGCOXp8AsCUhpRSlGgVSzJoFkdAojwdAZ88cXV9lChoBmgJaA9DCEHyzqEM9QrAlIaUUpRoFUsyaBZHQKI7wPvrnkl1fZQoaAZoCWgPQwgewCK/fsgFwJSGlFKUaBVLMmgWR0CiO2K9wm3OdX2UKGgGaAloD0MIqMXgYdp3A8CUhpRSlGgVSzJoFkdAojsIhhYvFnV9lChoBmgJaA9DCOD1mbM+pQ7AlIaUUpRoFUsyaBZHQKI89PXTVlR1fZQoaAZoCWgPQwgjZ2FPO1wBwJSGlFKUaBVLMmgWR0CiPJkhaC+UdX2UKGgGaAloD0MIrIxGPq+4CcCUhpRSlGgVSzJoFkdAojw6619fC3V9lChoBmgJaA9DCNY2xeOiWgvAlIaUUpRoFUsyaBZHQKI74KhL5AR1fZQoaAZoCWgPQwgjg9xFmKL4v5SGlFKUaBVLMmgWR0CiPeE7OmiydX2UKGgGaAloD0MI2O+Jdar8BMCUhpRSlGgVSzJoFkdAoj2FF+d9UnV9lChoBmgJaA9DCA9h/DTuDQLAlIaUUpRoFUsyaBZHQKI9Jx4IKMN1fZQoaAZoCWgPQwgW+IpuveYKwJSGlFKUaBVLMmgWR0CiPMzreIl/dX2UKGgGaAloD0MIfSWQErs2+L+UhpRSlGgVSzJoFkdAoj68scyWRnV9lChoBmgJaA9DCG/0MR8QiADAlIaUUpRoFUsyaBZHQKI+YI7/4qR1fZQoaAZoCWgPQwh7Z7RVSSQAwJSGlFKUaBVLMmgWR0CiPgJGFzuGdX2UKGgGaAloD0MIZDvfT40XBcCUhpRSlGgVSzJoFkdAoj2n029+PXV9lChoBmgJaA9DCE5eZAJ+zQfAlIaUUpRoFUsyaBZHQKI/o1BMSK51fZQoaAZoCWgPQwhGPxpOmfsFwJSGlFKUaBVLMmgWR0CiP0cSGrS3dX2UKGgGaAloD0MIvlDAdjBiEsCUhpRSlGgVSzJoFkdAoj7orWiDd3V9lChoBmgJaA9DCGglrfiGAgXAlIaUUpRoFUsyaBZHQKI+jnwG4Zx1fZQoaAZoCWgPQwhI+x9grVr7v5SGlFKUaBVLMmgWR0CiQHV3dKukdX2UKGgGaAloD0MINZcbDHWYA8CUhpRSlGgVSzJoFkdAokAZWilBQnV9lChoBmgJaA9DCI3vi0tVGvm/lIaUUpRoFUsyaBZHQKI/uyLQ5WB1fZQoaAZoCWgPQwiRRZp4B7gCwJSGlFKUaBVLMmgWR0CiP2DR2KVIdX2UKGgGaAloD0MIuoRDb/EwBsCUhpRSlGgVSzJoFkdAokFN56dDpnV9lChoBmgJaA9DCGgIxyx70vy/lIaUUpRoFUsyaBZHQKJA8gwGnoB1fZQoaAZoCWgPQwiscMtHUhIPwJSGlFKUaBVLMmgWR0CiQJPOQhfTdX2UKGgGaAloD0MIymsldJfkBMCUhpRSlGgVSzJoFkdAokA5qREF4nV9lChoBmgJaA9DCKdc4V0uognAlIaUUpRoFUsyaBZHQKJCJKNAC4l1fZQoaAZoCWgPQwg8LT9wlaf/v5SGlFKUaBVLMmgWR0CiQcigkC3gdX2UKGgGaAloD0MI9S1zuizGAMCUhpRSlGgVSzJoFkdAokFqc3EQ5HV9lChoBmgJaA9DCLN5HAbztw7AlIaUUpRoFUsyaBZHQKJBD/3nIQx1ZS4="
|
60 |
+
},
|
61 |
+
"ep_success_buffer": {
|
62 |
+
":type:": "<class 'collections.deque'>",
|
63 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
+
},
|
65 |
+
"_n_updates": 50000,
|
66 |
+
"n_steps": 5,
|
67 |
+
"gamma": 0.99,
|
68 |
+
"gae_lambda": 1.0,
|
69 |
+
"ent_coef": 0.0,
|
70 |
+
"vf_coef": 0.5,
|
71 |
+
"max_grad_norm": 0.5,
|
72 |
+
"normalize_advantage": false,
|
73 |
+
"observation_space": {
|
74 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
|
76 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
+
"_shape": null,
|
78 |
+
"dtype": null,
|
79 |
+
"_np_random": null
|
80 |
+
},
|
81 |
+
"action_space": {
|
82 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
+
"dtype": "float32",
|
85 |
+
"_shape": [
|
86 |
+
3
|
87 |
+
],
|
88 |
+
"low": "[-1. -1. -1.]",
|
89 |
+
"high": "[1. 1. 1.]",
|
90 |
+
"bounded_below": "[ True True True]",
|
91 |
+
"bounded_above": "[ True True True]",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 4
|
95 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:76279ec00aec90aafa4ea847d77d2ad18773b6958fb49bfbfd2c21fe2c46b028
|
3 |
+
size 44606
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:437388e06fb2944cb0344404335a6133c67ee9c2a56abc0a8147ae60672b07e7
|
3 |
+
size 45886
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fde91189870>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fde91187380>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684332635463805596, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA5W7VPlJQ6zqHiwM/5W7VPlJQ6zqHiwM/5W7VPlJQ6zqHiwM/5W7VPlJQ6zqHiwM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAADz/evpTNjb+9UsE/rnaqvtmfpj7bnbk/bqOcPn7nNr/Reqw9pX9CvXb9uz3RJis/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADlbtU+UlDrOoeLAz9YXuS7c4WdOyvz6zvlbtU+UlDrOoeLAz9YXuS7c4WdOyvz6zvlbtU+UlDrOoeLAz9YXuS7c4WdOyvz6zvlbtU+UlDrOoeLAz9YXuS7c4WdOyvz6zuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.41686168 0.0017953 0.51384777]\n [0.41686168 0.0017953 0.51384777]\n [0.41686168 0.0017953 0.51384777]\n [0.41686168 0.0017953 0.51384777]]", "desired_goal": "[[-0.43407485 -1.1078362 1.5103375 ]\n [-0.3329367 0.3254383 1.4501299 ]\n [ 0.30593437 -0.7144698 0.08421863]\n [-0.04748501 0.09179203 0.66856104]]", "observation": "[[ 0.41686168 0.0017953 0.51384777 -0.00696925 0.00480717 0.00720062]\n [ 0.41686168 0.0017953 0.51384777 -0.00696925 0.00480717 0.00720062]\n [ 0.41686168 0.0017953 0.51384777 -0.00696925 0.00480717 0.00720062]\n [ 0.41686168 0.0017953 0.51384777 -0.00696925 0.00480717 0.00720062]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAKoOuPYrhi70OFI0+kAwUvoDJvz3omlo+RTz8PTMTEb5d0Ck+7sjJPVRpmb08hQI9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.08521111 -0.06830128 0.27554363]\n [-0.14457917 0.09364605 0.21348155]\n [ 0.12316183 -0.1416748 0.1658339 ]\n [ 0.09852777 -0.07490793 0.03186534]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIhdIXQs6bE8CUhpRSlIwBbJRLMowBdJRHQKIsLqX4TK11fZQoaAZoCWgPQwgnS633G60FwJSGlFKUaBVLMmgWR0CiK9LoW56MdX2UKGgGaAloD0MI+tLbn4uGCcCUhpRSlGgVSzJoFkdAoit1Ed/8VHV9lChoBmgJaA9DCCgn2lVIOQPAlIaUUpRoFUsyaBZHQKIrGzPa+N91fZQoaAZoCWgPQwjpnJ/iOJAAwJSGlFKUaBVLMmgWR0CiLXKDCgscdX2UKGgGaAloD0MIF/GdmPUCBsCUhpRSlGgVSzJoFkdAoi0WxD9fkXV9lChoBmgJaA9DCCE82jhi3RPAlIaUUpRoFUsyaBZHQKIsuMPz4Dd1fZQoaAZoCWgPQwiRCfg1ksT/v5SGlFKUaBVLMmgWR0CiLF8ZDRdAdX2UKGgGaAloD0MIameY2lKnE8CUhpRSlGgVSzJoFkdAoi6u9eyAx3V9lChoBmgJaA9DCJWbqKW5lQnAlIaUUpRoFUsyaBZHQKIuU1rIo3J1fZQoaAZoCWgPQwhm22lrRAAUwJSGlFKUaBVLMmgWR0CiLfWYnfEXdX2UKGgGaAloD0MIycwFLo+1DMCUhpRSlGgVSzJoFkdAoi2bpTuOTHV9lChoBmgJaA9DCLU3+MJkKhbAlIaUUpRoFUsyaBZHQKIv9qzJIUd1fZQoaAZoCWgPQwgIqkavBqgCwJSGlFKUaBVLMmgWR0CiL5sR6F/QdX2UKGgGaAloD0MIQu4iTFFeEsCUhpRSlGgVSzJoFkdAoi89cpsoD3V9lChoBmgJaA9DCJBOXfks7wPAlIaUUpRoFUsyaBZHQKIu43hGYrt1fZQoaAZoCWgPQwgXfnA+dYwQwJSGlFKUaBVLMmgWR0CiMTGRvFWGdX2UKGgGaAloD0MIsaVHUz1ZFMCUhpRSlGgVSzJoFkdAojDVnqVyFXV9lChoBmgJaA9DCB1VTRB1fxDAlIaUUpRoFUsyaBZHQKIwdynUDuB1fZQoaAZoCWgPQwgzbf/KSpMSwJSGlFKUaBVLMmgWR0CiMBzKDCgsdX2UKGgGaAloD0MIYhHDDmPiGcCUhpRSlGgVSzJoFkdAojH/0Eovz3V9lChoBmgJaA9DCO3YCMTrehrAlIaUUpRoFUsyaBZHQKIxo6bONYN1fZQoaAZoCWgPQwh1d50N+ZcQwJSGlFKUaBVLMmgWR0CiMUVurIYFdX2UKGgGaAloD0MIx2Xc1EBjGMCUhpRSlGgVSzJoFkdAojDrBdld1XV9lChoBmgJaA9DCLFR1m8mdhHAlIaUUpRoFUsyaBZHQKIy0ZrpJPJ1fZQoaAZoCWgPQwhz2eicn1IRwJSGlFKUaBVLMmgWR0CiMnV/tpmFdX2UKGgGaAloD0MIrkoi+yCrFMCUhpRSlGgVSzJoFkdAojIXPmganHV9lChoBmgJaA9DCBaJCWr4dhDAlIaUUpRoFUsyaBZHQKIxvQbdadN1fZQoaAZoCWgPQwiDv1/MluwEwJSGlFKUaBVLMmgWR0CiM5KiGnGbdX2UKGgGaAloD0MIFF6CUx8oBsCUhpRSlGgVSzJoFkdAojM2mNzbOHV9lChoBmgJaA9DCCBGCI82jgDAlIaUUpRoFUsyaBZHQKIy2EYfnwJ1fZQoaAZoCWgPQwiLGkzD8IETwJSGlFKUaBVLMmgWR0CiMn32EkB0dX2UKGgGaAloD0MIaxDmdi83/L+UhpRSlGgVSzJoFkdAojRvU4JeFHV9lChoBmgJaA9DCGB2Tx4W6g/AlIaUUpRoFUsyaBZHQKI0Ex2St/51fZQoaAZoCWgPQwitMeiE0MELwJSGlFKUaBVLMmgWR0CiM7TijtXxdX2UKGgGaAloD0MIrWpJRzmYDcCUhpRSlGgVSzJoFkdAojNamfoRqXV9lChoBmgJaA9DCCKq8Gd4kwvAlIaUUpRoFUsyaBZHQKI1QJ+lTFV1fZQoaAZoCWgPQwgld9hEZm4XwJSGlFKUaBVLMmgWR0CiNOSydFvydX2UKGgGaAloD0MIjUEnhA7aB8CUhpRSlGgVSzJoFkdAojSGdVea8nV9lChoBmgJaA9DCGVVhJuMigzAlIaUUpRoFUsyaBZHQKI0LAPd2xJ1fZQoaAZoCWgPQwiFeY8zTYgRwJSGlFKUaBVLMmgWR0CiNhsQVbiZdX2UKGgGaAloD0MIHTuoxHV8EcCUhpRSlGgVSzJoFkdAojW+7Wd3CHV9lChoBmgJaA9DCGed8X1x6QzAlIaUUpRoFUsyaBZHQKI1YKMNtqJ1fZQoaAZoCWgPQwjLS/4nf5cOwJSGlFKUaBVLMmgWR0CiNQZqM3qBdX2UKGgGaAloD0MIGHlZEws8D8CUhpRSlGgVSzJoFkdAojb2Btk4FXV9lChoBmgJaA9DCG77HvXXCw3AlIaUUpRoFUsyaBZHQKI2mgwoLG91fZQoaAZoCWgPQwhlbr4R3ZMPwJSGlFKUaBVLMmgWR0CiNjvRzBAOdX2UKGgGaAloD0MI9ifxuRNsA8CUhpRSlGgVSzJoFkdAojXhpeu3dHV9lChoBmgJaA9DCPHxCdl5KxHAlIaUUpRoFUsyaBZHQKI31KmsNlR1fZQoaAZoCWgPQwjkEHFzKrkAwJSGlFKUaBVLMmgWR0CiN3inYQJ5dX2UKGgGaAloD0MIOQ8nMJ2WBcCUhpRSlGgVSzJoFkdAojcaHO8kEHV9lChoBmgJaA9DCDdV98jmigDAlIaUUpRoFUsyaBZHQKI2v82Jiy91fZQoaAZoCWgPQwgvbTgsDSwVwJSGlFKUaBVLMmgWR0CiOK+XzDoAdX2UKGgGaAloD0MILnB5rBnZCMCUhpRSlGgVSzJoFkdAojhTj7yhBnV9lChoBmgJaA9DCFw9J71vPAjAlIaUUpRoFUsyaBZHQKI39VzZHut1fZQoaAZoCWgPQwiA7zZvnIQRwJSGlFKUaBVLMmgWR0CiN5sfq5bydX2UKGgGaAloD0MIixcLQ+Q0AcCUhpRSlGgVSzJoFkdAojmNz+3pfXV9lChoBmgJaA9DCNXt7CsPwhDAlIaUUpRoFUsyaBZHQKI5MZxaPjp1fZQoaAZoCWgPQwjVA+YhU04UwJSGlFKUaBVLMmgWR0CiONMvysjndX2UKGgGaAloD0MICU59IHmn/b+UhpRSlGgVSzJoFkdAojh49C/oJXV9lChoBmgJaA9DCNnQzf5AGQHAlIaUUpRoFUsyaBZHQKI6aS2Yv391fZQoaAZoCWgPQwho0NA/wbURwJSGlFKUaBVLMmgWR0CiOg0Yj0L/dX2UKGgGaAloD0MI53KDoQ4LDMCUhpRSlGgVSzJoFkdAojmuruIAO3V9lChoBmgJaA9DCFj/5zBfjhDAlIaUUpRoFUsyaBZHQKI5VFl05lx1fZQoaAZoCWgPQwhf7SjOUUcIwJSGlFKUaBVLMmgWR0CiO0gow22odX2UKGgGaAloD0MI8RDGT+P+A8CUhpRSlGgVSzJoFkdAojrsMgEEDHV9lChoBmgJaA9DCGmM1lHV5A3AlIaUUpRoFUsyaBZHQKI6jgTh5xB1fZQoaAZoCWgPQwgD0Chd+tcIwJSGlFKUaBVLMmgWR0CiOjPUKArhdX2UKGgGaAloD0MIzQGCOXp8AsCUhpRSlGgVSzJoFkdAojwdAZ88cXV9lChoBmgJaA9DCEHyzqEM9QrAlIaUUpRoFUsyaBZHQKI7wPvrnkl1fZQoaAZoCWgPQwgewCK/fsgFwJSGlFKUaBVLMmgWR0CiO2K9wm3OdX2UKGgGaAloD0MIqMXgYdp3A8CUhpRSlGgVSzJoFkdAojsIhhYvFnV9lChoBmgJaA9DCOD1mbM+pQ7AlIaUUpRoFUsyaBZHQKI89PXTVlR1fZQoaAZoCWgPQwgjZ2FPO1wBwJSGlFKUaBVLMmgWR0CiPJkhaC+UdX2UKGgGaAloD0MIrIxGPq+4CcCUhpRSlGgVSzJoFkdAojw6619fC3V9lChoBmgJaA9DCNY2xeOiWgvAlIaUUpRoFUsyaBZHQKI74KhL5AR1fZQoaAZoCWgPQwgjg9xFmKL4v5SGlFKUaBVLMmgWR0CiPeE7OmiydX2UKGgGaAloD0MI2O+Jdar8BMCUhpRSlGgVSzJoFkdAoj2FF+d9UnV9lChoBmgJaA9DCA9h/DTuDQLAlIaUUpRoFUsyaBZHQKI9Jx4IKMN1fZQoaAZoCWgPQwgW+IpuveYKwJSGlFKUaBVLMmgWR0CiPMzreIl/dX2UKGgGaAloD0MIfSWQErs2+L+UhpRSlGgVSzJoFkdAoj68scyWRnV9lChoBmgJaA9DCG/0MR8QiADAlIaUUpRoFUsyaBZHQKI+YI7/4qR1fZQoaAZoCWgPQwh7Z7RVSSQAwJSGlFKUaBVLMmgWR0CiPgJGFzuGdX2UKGgGaAloD0MIZDvfT40XBcCUhpRSlGgVSzJoFkdAoj2n029+PXV9lChoBmgJaA9DCE5eZAJ+zQfAlIaUUpRoFUsyaBZHQKI/o1BMSK51fZQoaAZoCWgPQwhGPxpOmfsFwJSGlFKUaBVLMmgWR0CiP0cSGrS3dX2UKGgGaAloD0MIvlDAdjBiEsCUhpRSlGgVSzJoFkdAoj7orWiDd3V9lChoBmgJaA9DCGglrfiGAgXAlIaUUpRoFUsyaBZHQKI+jnwG4Zx1fZQoaAZoCWgPQwhI+x9grVr7v5SGlFKUaBVLMmgWR0CiQHV3dKukdX2UKGgGaAloD0MINZcbDHWYA8CUhpRSlGgVSzJoFkdAokAZWilBQnV9lChoBmgJaA9DCI3vi0tVGvm/lIaUUpRoFUsyaBZHQKI/uyLQ5WB1fZQoaAZoCWgPQwiRRZp4B7gCwJSGlFKUaBVLMmgWR0CiP2DR2KVIdX2UKGgGaAloD0MIuoRDb/EwBsCUhpRSlGgVSzJoFkdAokFN56dDpnV9lChoBmgJaA9DCGgIxyx70vy/lIaUUpRoFUsyaBZHQKJA8gwGnoB1fZQoaAZoCWgPQwiscMtHUhIPwJSGlFKUaBVLMmgWR0CiQJPOQhfTdX2UKGgGaAloD0MIymsldJfkBMCUhpRSlGgVSzJoFkdAokA5qREF4nV9lChoBmgJaA9DCKdc4V0uognAlIaUUpRoFUsyaBZHQKJCJKNAC4l1fZQoaAZoCWgPQwg8LT9wlaf/v5SGlFKUaBVLMmgWR0CiQcigkC3gdX2UKGgGaAloD0MI9S1zuizGAMCUhpRSlGgVSzJoFkdAokFqc3EQ5HV9lChoBmgJaA9DCLN5HAbztw7AlIaUUpRoFUsyaBZHQKJBD/3nIQx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (782 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -2.5509857784491032, "std_reward": 0.8549052880592126, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-17T14:49:35.600029"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7ea07e2757fc4ccc2e8e4cd8c5d48a2c736a564d6d75917d0b7fdd909a1e7b0c
|
3 |
+
size 2387
|