batterydata
commited on
Commit
路
f420944
1
Parent(s):
29434d8
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,63 @@
|
|
1 |
---
|
|
|
|
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language: en
|
3 |
+
tags: question answering
|
4 |
license: apache-2.0
|
5 |
+
datasets:
|
6 |
+
- squad
|
7 |
+
- batterydata/battery-device-data-qa
|
8 |
+
metrics: squad
|
9 |
---
|
10 |
+
|
11 |
+
# BatteryBERT-cased for QA
|
12 |
+
**Language model:** batterybert-cased
|
13 |
+
**Language:** English
|
14 |
+
**Downstream-task:** Extractive QA
|
15 |
+
**Training data:** SQuAD v1
|
16 |
+
**Eval data:** SQuAD v1
|
17 |
+
**Code:** See [example](https://github.com/ShuHuang/batterybert)
|
18 |
+
**Infrastructure**: 8x DGX A100
|
19 |
+
## Hyperparameters
|
20 |
+
```
|
21 |
+
batch_size = 16
|
22 |
+
n_epochs = 4
|
23 |
+
base_LM_model = "batterybert-cased"
|
24 |
+
max_seq_len = 386
|
25 |
+
learning_rate = 2e-5
|
26 |
+
doc_stride=128
|
27 |
+
max_query_length=64
|
28 |
+
```
|
29 |
+
## Performance
|
30 |
+
Evaluated on the SQuAD v1.0 dev set.
|
31 |
+
```
|
32 |
+
"exact": 81.54,
|
33 |
+
"f1": 89.16,
|
34 |
+
```
|
35 |
+
Evaluated on the battery device dataset.
|
36 |
+
```
|
37 |
+
"precision": 70.74,
|
38 |
+
"recall": 84.19,
|
39 |
+
```
|
40 |
+
## Usage
|
41 |
+
### In Transformers
|
42 |
+
```python
|
43 |
+
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
|
44 |
+
|
45 |
+
model_name = "batterydata/batterybert-cased-squad-v1"
|
46 |
+
# a) Get predictions
|
47 |
+
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
|
48 |
+
QA_input = {
|
49 |
+
'question': 'What is the electrolyte?',
|
50 |
+
'context': 'The typical non-aqueous electrolyte for commercial Li-ion cells is a solution of LiPF6 in linear and cyclic carbonates.'
|
51 |
+
}
|
52 |
+
res = nlp(QA_input)
|
53 |
+
# b) Load model & tokenizer
|
54 |
+
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
|
55 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
56 |
+
```
|
57 |
+
## Authors
|
58 |
+
Shu Huang: `sh2009 [at] cam.ac.uk`
|
59 |
+
|
60 |
+
Jacqueline Cole: `jmc61 [at] cam.ac.uk`
|
61 |
+
|
62 |
+
## Citation
|
63 |
+
BatteryBERT: A Pre-trained Language Model for Battery Database Enhancement
|