--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:710 - loss:MultipleNegativesRankingLoss base_model: bau0221/ptz_embedding widget: - source_sentence: Set Camera 4 to follow Ava at the top side sentences: - Camera 4 put Grace on the top side - Set Camera 3 to put Michael at the bottom side - Set Wyatt at the left side on group1 - source_sentence: Camera 1 put Hazel on the right side sentences: - Group2 move Elijah to the top side - Camera 4 put Amelia on the left side - Set Camera 2 to follow Ethan at the top side - source_sentence: Group2 place Harper at the left side sentences: - Camera 1 put Zoe at the right side - Camera group1 put Aiden at the right side - Camera 1 put Chloe on the right side - source_sentence: Camera 2 put Henry at the left side sentences: - group1 put Nathan at the left side - Set Camera 2 to position Emma at the top side - group1 put Wyatt at the left side - source_sentence: group1 put Abigail on the right side sentences: - Set Evelyn at the right side on Camera 1 - Place James on the top side of Camera 4 - Move Charlotte to the right on Camera 4 pipeline_tag: sentence-similarity library_name: sentence-transformers --- # SentenceTransformer based on bau0221/ptz_embedding This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [bau0221/ptz_embedding](https://huggingface.co/bau0221/ptz_embedding). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [bau0221/ptz_embedding](https://huggingface.co/bau0221/ptz_embedding) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 384 dimensions - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("bau0221/ptz_embedding_ver3") # Run inference sentences = [ 'group1 put Abigail on the right side', 'Move Charlotte to the right on Camera 4', 'Set Evelyn at the right side on Camera 1', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 384] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 710 training samples * Columns: query, pos, and neg * Approximate statistics based on the first 710 samples: | | query | pos | neg | |:--------|:----------------------------------------------------------------------------------|:-----------------------------------|:-----------------------------------| | type | string | list | list | | details | | | | * Samples: | query | pos | neg | |:-----------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Set camera 1 to track target A at bottom_right with fast speed. | ['Set camera 1 to track target A at bottom_right with fast speed.', 'Set camera 1 to track target A at bottom_right with fast speed.', 'Set camera 1 to track target A at bottom_right with fast speed.'] | ['Camera 2 tracking Kyle', 'Set camera 3 to track target B at the top with slow speed.', 'Turn camera 2 to the right for 5 seconds.'] | | Camera 2 tracking Kyle | ['Camera 2 tracking Kyle', 'Camera 4 tracking Kyle', 'Cam 2 tracking Kyle'] | ['Set camera 1 to track target A at bottom_right with fast speed.', 'Set camera 3 to track target B at the top with slow speed.', 'Turn camera 2 to the right for 5 seconds.'] | | Set camera 3 to track target B at the top with slow speed. | ['Set camera 3 to track target B at the top with slow speed.', 'Set camera 3 to track target B at the top with slow speed.', 'Set camera 3 to track target B at the top with slow speed.'] | ['Set camera 1 to track target A at bottom_right with fast speed.', 'Camera 2 tracking Kyle', 'Turn camera 2 to the right for 5 seconds.'] | * Loss: [MultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Evaluation Dataset #### Unnamed Dataset * Size: 71 evaluation samples * Columns: query, pos, and neg * Approximate statistics based on the first 71 samples: | | query | pos | neg | |:--------|:----------------------------------------------------------------------------------|:-----------------------------------|:-----------------------------------| | type | string | list | list | | details | | | | * Samples: | query | pos | neg | |:---------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Camera 3 put Harper at the right side | ['Camera 3 put Harper at the right side', 'Cam 3 put Harper at the right side', 'Camera 3 put Harper at the right side'] | ['Set camera 1 to track target A at bottom_right with fast speed.', 'Camera 2 tracking Kyle', 'Set camera 3 to track target B at the top with slow speed.'] | | Camera 4 put Amelia on the left side | ['Camera 4 put Amelia on the left side', 'Cam 4 put Amelia on the left side', 'Camera 4 put Amelia on the left side'] | ['Set camera 1 to track target A at bottom_right with fast speed.', 'Camera 2 tracking Kyle', 'Set camera 3 to track target B at the top with slow speed.'] | | Group2 put Logan at the right side | ['Group2 put Logan at the right side', 'Group2 put Logan at the right side', 'Group2 put Logan at the right side'] | ['Set camera 1 to track target A at bottom_right with fast speed.', 'Camera 2 tracking Kyle', 'Set camera 3 to track target B at the top with slow speed.'] | * Loss: [MultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Training Hyperparameters #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 8 - `per_device_eval_batch_size`: 8 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 3.0 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional
### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.3.1 - Transformers: 4.47.1 - PyTorch: 2.5.1+cu121 - Accelerate: 1.2.1 - Datasets: 3.2.0 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```