--- license: mit datasets: - liuhaotian/LLaVA-Pretrain - liuhaotian/LLaVA-Instruct-150K language: - en - zh library_name: transformers pipeline_tag: visual-question-answering --- # WORK IN PROGRESS ## Model type TinyLLaVA, a tiny model (1.4B) trained using the exact training recipe of [LLaVA-1.5](https://github.com/haotian-liu/LLaVA). We trained our TinyLLaVA using [TinyLlama](https://huggingface.co/PY007/TinyLlama-1.1B-Chat-v0.3) as our LLM backbone, and [clip-vit-large-patch14-336](https://huggingface.co/openai/clip-vit-large-patch14-336) as our vision backbone. ## Model Performance We have evaluated TinyLLaVA on [GQA](https://cs.stanford.edu/people/dorarad/gqa/about.html), [VizWiz](https://www.vizwiz.com/), [VQAv2](https://visualqa.org/), [TextVQA](https://textvqa.org/) and [SQA](https://github.com/lupantech/ScienceQA). | Model | VQAv2 | GQA | SQA | TextVQA | VizWiz | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | | TinyLLaVA-v1-1.4B | 73.41 | 57.54 | 59.40 | 46.37 | 49.56 | | BLIP-2 | 41.00 | 41.00 | 61.00 | 42.50 | 19.60 | | LLaVA-v1.5-7B | 78.50 | 62.00 | 66.80 | 61.3 | 50 | | LLaVA-v1.5-13B | 80.00 | 63.30 | 71.60 | 61.3 | 53.6 | | Qwen-VL-7B | 78.80 | 59.30 | 67.10 | 63.8 | 35.2 | | Qwen-VL-13B | 78.20 | 57.50 | 68.20 | 61.5 | 38.9 | More evaluations are ongoing. ## Model use The weights have been converted to hf format. ## How to use the model First, make sure to have `transformers >= 4.35.3`. The model supports multi-image and multi-prompt generation. Meaning that you can pass multiple images in your prompt. Make sure also to follow the correct prompt template (`USER: xxx\nASSISTANT:`) and add the token `` to the location where you want to query images: ### Using `pipeline`: Below we used [`"bczhou/tiny-llava-v1-hf"`](https://huggingface.co/bczhou/tiny-llava-v1-hf) checkpoint. ```python from transformers import pipeline from PIL import Image import requests model_id = "bczhou/tiny-llava-v1-hf" pipe = pipeline("image-to-text", model=model_id) url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg" image = Image.open(requests.get(url, stream=True).raw) prompt = "USER: \nWhat does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud\nASSISTANT:" outputs = pipe(image, prompt=prompt, generate_kwargs={"max_new_tokens": 200}) print(outputs[0]) >>> {"generated_text': 'USER: \nWhat does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud\nASSISTANT: The label 15 represents lava, which is a type of volcanic rock."} ``` ### Using pure `transformers`: Below is an example script to run generation in `float16` precision on a GPU device: ```python import requests from PIL import Image import torch from transformers import AutoProcessor, LlavaForConditionalGeneration model_id = "bczhou/tiny-llava-v1-hf" prompt = "USER: \nWhat are these?\nASSISTANT:" image_file = "http://images.cocodataset.org/val2017/000000039769.jpg" model = LlavaForConditionalGeneration.from_pretrained( model_id, torch_dtype=torch.float16, low_cpu_mem_usage=True, ).to(0) processor = AutoProcessor.from_pretrained(model_id) raw_image = Image.open(requests.get(image_file, stream=True).raw) inputs = processor(prompt, raw_image, return_tensors='pt').to(0, torch.float16) output = model.generate(**inputs, max_new_tokens=200, do_sample=False) print(processor.decode(output[0][2:], skip_special_tokens=True)) ```