--- library_name: peft license: apache-2.0 base_model: AdaptLLM/biomed-Qwen2-VL-2B-Instruct tags: - llama-factory - lora - generated_from_trainer model-index: - name: qwenvl-2B-cadica-stenosis-classify-lora results: [] --- # qwenvl-2B-cadica-stenosis-classify-lora This model is a fine-tuned version of [AdaptLLM/biomed-Qwen2-VL-2B-Instruct](https://huggingface.co/AdaptLLM/biomed-Qwen2-VL-2B-Instruct) on the CADICA狹窄分析選擇題(TRAIN) dataset. It achieves the following results on the evaluation set: - Loss: 0.7947 - Num Input Tokens Seen: 11152104 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - total_eval_batch_size: 4 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:------:|:----:|:---------------:|:-----------------:| | 0.9039 | 0.1396 | 50 | 0.9039 | 779728 | | 0.9033 | 0.2792 | 100 | 0.9009 | 1559632 | | 0.9001 | 0.4188 | 150 | 0.8988 | 2339368 | | 0.902 | 0.5585 | 200 | 0.9004 | 3119064 | | 0.8933 | 0.6981 | 250 | 0.9052 | 3898784 | | 0.897 | 0.8377 | 300 | 0.9004 | 4678472 | | 0.8997 | 0.9773 | 350 | 0.9016 | 5458104 | | 0.9109 | 1.1145 | 400 | 0.8960 | 6224248 | | 0.8127 | 1.2541 | 450 | 0.8822 | 7003904 | | 0.8198 | 1.3937 | 500 | 0.8460 | 7783528 | | 0.832 | 1.5333 | 550 | 0.8188 | 8563264 | | 0.786 | 1.6729 | 600 | 0.8021 | 9343120 | | 0.8312 | 1.8126 | 650 | 0.7986 | 10122936 | | 0.7797 | 1.9522 | 700 | 0.7947 | 10902632 | ### Framework versions - PEFT 0.12.0 - Transformers 4.47.0.dev0 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3