NeMo
English
bene-ges commited on
Commit
d5f60fb
1 Parent(s): 0ce50fb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +41 -1
README.md CHANGED
@@ -6,4 +6,44 @@ language:
6
  - en
7
  library_name: nemo
8
  ---
9
- not ready
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  - en
7
  library_name: nemo
8
  ---
9
+ # SpellMapper - Spellchecking ASR Customization Model
10
+
11
+ <style>
12
+ img {
13
+ display: inline;
14
+ }
15
+ </style>
16
+
17
+ | [![Language](https://img.shields.io/badge/Language-en--US-lightgrey#model-badge)](#datasets)
18
+
19
+ This model is an alternative to word boosting/shallow fusion approaches:
20
+
21
+ - does not require retraining ASR model;
22
+ - does not require beam-search/language model (LM);
23
+ - can be applied on top of any English ASR model output;
24
+
25
+ Paper: [SpellMapper: A non-autoregressive neural spellchecker for ASR customization with candidate retrieval based on n-gram mappings](https://arxiv.org/abs/2306.02317)
26
+
27
+
28
+
29
+ ## How to Use this Model
30
+
31
+ To use this model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo).
32
+
33
+ See [Bash-script](https://github.com/NVIDIA/NeMo/blob/main/examples/nlp/spellchecking_asr_customization/run_infer.sh) with example of inference pipeline.
34
+
35
+ Or play with [Tutorial](https://github.com/NVIDIA/NeMo/blob/stable/tutorials/nlp/SpellMapper_English_ASR_Customization.ipynb).
36
+
37
+
38
+ ## Citation
39
+
40
+ ```bibtex
41
+ @misc{antonova2023spellmapper,
42
+ title={SpellMapper: A non-autoregressive neural spellchecker for ASR customization with candidate retrieval based on n-gram mappings},
43
+ author={Alexandra Antonova and Evelina Bakhturina and Boris Ginsburg},
44
+ year={2023},
45
+ eprint={2306.02317},
46
+ archivePrefix={arXiv},
47
+ primaryClass={cs.CL}
48
+ }
49
+ ```