File size: 1,958 Bytes
04f95f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: apache-2.0
base_model: google-bert/bert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: leetcode-solution-method-classifier-bert-base-uncased
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# leetcode-solution-method-classifier-bert-base-uncased

This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.5560
- Accuracy: 0.4106

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 464  | 2.2015          | 0.3333   |
| 2.2822        | 2.0   | 928  | 2.0300          | 0.3478   |
| 2.1285        | 3.0   | 1392 | 1.9383          | 0.3623   |
| 1.8958        | 4.0   | 1856 | 1.8928          | 0.4010   |
| 1.5333        | 5.0   | 2320 | 2.1470          | 0.4010   |
| 1.1718        | 6.0   | 2784 | 2.2002          | 0.4396   |
| 0.7684        | 7.0   | 3248 | 2.7009          | 0.4300   |
| 0.48          | 8.0   | 3712 | 3.3770          | 0.3720   |
| 0.2755        | 9.0   | 4176 | 3.5560          | 0.4106   |


### Framework versions

- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 3.1.0
- Tokenizers 0.19.1