taproot-common / pose-detection-dwpose-estimation.py
benjamin-paine's picture
Add files using upload-large-folder tool
5cd734d verified
raw
history blame
227 kB
return {
"meta": {
"epoch": 20,
"iter": 19141,
"cfg": "default_scope = 'mmpose'\ndefault_hooks = dict(\n timer=dict(type='IterTimerHook'),\n logger=dict(type='LoggerHook', interval=50),\n param_scheduler=dict(type='ParamSchedulerHook'),\n checkpoint=dict(\n type='CheckpointHook',\n interval=10,\n save_best='coco-wholebody/AP',\n rule='greater',\n max_keep_ckpts=1),\n sampler_seed=dict(type='DistSamplerSeedHook'),\n visualization=dict(type='PoseVisualizationHook', enable=False))\ncustom_hooks = [\n dict(\n type='EMAHook',\n ema_type='ExpMomentumEMA',\n momentum=0.0002,\n update_buffers=True,\n priority=49),\n dict(\n type='mmdet.PipelineSwitchHook',\n switch_epoch=240,\n switch_pipeline=[\n dict(type='LoadImage', backend_args=dict(backend='local')),\n dict(type='GetBBoxCenterScale'),\n dict(type='RandomFlip', direction='horizontal'),\n dict(type='RandomHalfBody'),\n dict(\n type='RandomBBoxTransform',\n shift_factor=0.0,\n scale_factor=[0.75, 1.25],\n rotate_factor=60),\n dict(type='TopdownAffine', input_size=(288, 384)),\n dict(type='mmdet.YOLOXHSVRandomAug'),\n dict(\n type='Albumentation',\n transforms=[\n dict(type='Blur', p=0.1),\n dict(type='MedianBlur', p=0.1),\n dict(\n type='CoarseDropout',\n max_holes=1,\n max_height=0.4,\n max_width=0.4,\n min_holes=1,\n min_height=0.2,\n min_width=0.2,\n p=0.5)\n ]),\n dict(\n type='GenerateTarget',\n encoder=dict(\n type='SimCCLabel',\n input_size=(288, 384),\n sigma=(6.0, 6.93),\n simcc_split_ratio=2.0,\n normalize=False,\n use_dark=False)),\n dict(type='PackPoseInputs')\n ])\n]\nenv_cfg = dict(\n cudnn_benchmark=False,\n mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),\n dist_cfg=dict(backend='nccl'))\nvis_backends = [dict(type='LocalVisBackend')]\nvisualizer = dict(\n type='PoseLocalVisualizer',\n vis_backends=[dict(type='LocalVisBackend')],\n name='visualizer')\nlog_processor = dict(\n type='LogProcessor', window_size=50, by_epoch=True, num_digits=6)\nlog_level = 'INFO'\nload_from = None\nresume = False\nbackend_args = dict(backend='local')\ntrain_cfg = dict(by_epoch=True, max_epochs=60, val_interval=10)\nval_cfg = dict()\ntest_cfg = dict()\nmax_epochs = 270\nstage2_num_epochs = 30\nbase_lr = 0.004\nrandomness = dict(seed=21)\noptim_wrapper = dict(\n type='OptimWrapper',\n optimizer=dict(type='AdamW', lr=0.004, weight_decay=0.05),\n paramwise_cfg=dict(\n norm_decay_mult=0, bias_decay_mult=0, bypass_duplicate=True),\n clip_grad=dict(max_norm=1.0, norm_type=2))\nparam_scheduler = [\n dict(\n type='LinearLR', start_factor=1e-05, by_epoch=False, begin=0,\n end=1000),\n dict(\n type='CosineAnnealingLR',\n eta_min=0.0002,\n begin=135,\n end=270,\n T_max=135,\n by_epoch=True,\n convert_to_iter_based=True)\n]\nauto_scale_lr = dict(base_batch_size=512)\ncodec = dict(\n type='SimCCLabel',\n input_size=(288, 384),\n sigma=(6.0, 6.93),\n simcc_split_ratio=2.0,\n normalize=False,\n use_dark=False)\nmodel = dict(\n type='PoseEstimatorDistiller',\n two_dis=True,\n teacher_pretrained=\n '/home/yangzhendong/Projects/mmpose/work_dirs/rtmpose_x_dis_l__coco-ubody-384x288/rtm-l_66.4.pth',\n teacher_cfg=\n 'configs/wholebody_2d_keypoint/rtmpose/ubody/rtmpose-l_8xb32-270e_coco-ubody-wholebody-384x288.py',\n student_cfg=\n 'configs/wholebody_2d_keypoint/rtmpose/ubody/rtmpose-l_8xb32-270e_coco-ubody-wholebody-384x288.py',\n distill_cfg=[\n dict(methods=[\n dict(\n type='MGD_2Loss',\n name='loss_mgd',\n use_this=True,\n student_channels=1024,\n teacher_channels=1024,\n alpha_mgd=7e-05,\n lambda_mgd=0.15)\n ]),\n dict(methods=[\n dict(type='NKDLoss', name='loss_nkd', use_this=True, weight=1)\n ])\n ],\n data_preprocessor=dict(\n type='PoseDataPreprocessor',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n bgr_to_rgb=True),\n train_cfg=dict(max_epochs=60, val_interval=10))\ndataset_type = 'CocoWholeBodyDataset'\ndata_mode = 'topdown'\ndata_root = '/data/'\ntrain_pipeline = [\n dict(type='LoadImage', backend_args=dict(backend='local')),\n dict(type='GetBBoxCenterScale'),\n dict(type='RandomFlip', direction='horizontal'),\n dict(type='RandomHalfBody'),\n dict(\n type='RandomBBoxTransform', scale_factor=[0.6, 1.4], rotate_factor=80),\n dict(type='TopdownAffine', input_size=(288, 384)),\n dict(type='mmdet.YOLOXHSVRandomAug'),\n dict(\n type='Albumentation',\n transforms=[\n dict(type='Blur', p=0.1),\n dict(type='MedianBlur', p=0.1),\n dict(\n type='CoarseDropout',\n max_holes=1,\n max_height=0.4,\n max_width=0.4,\n min_holes=1,\n min_height=0.2,\n min_width=0.2,\n p=1.0)\n ]),\n dict(\n type='GenerateTarget',\n encoder=dict(\n type='SimCCLabel',\n input_size=(288, 384),\n sigma=(6.0, 6.93),\n simcc_split_ratio=2.0,\n normalize=False,\n use_dark=False)),\n dict(type='PackPoseInputs')\n]\nval_pipeline = [\n dict(type='LoadImage', backend_args=dict(backend='local')),\n dict(type='GetBBoxCenterScale'),\n dict(type='TopdownAffine', input_size=(288, 384)),\n dict(type='PackPoseInputs')\n]\ntrain_pipeline_stage2 = [\n dict(type='LoadImage', backend_args=dict(backend='local')),\n dict(type='GetBBoxCenterScale'),\n dict(type='RandomFlip', direction='horizontal'),\n dict(type='RandomHalfBody'),\n dict(\n type='RandomBBoxTransform',\n shift_factor=0.0,\n scale_factor=[0.75, 1.25],\n rotate_factor=60),\n dict(type='TopdownAffine', input_size=(288, 384)),\n dict(type='mmdet.YOLOXHSVRandomAug'),\n dict(\n type='Albumentation',\n transforms=[\n dict(type='Blur', p=0.1),\n dict(type='MedianBlur', p=0.1),\n dict(\n type='CoarseDropout',\n max_holes=1,\n max_height=0.4,\n max_width=0.4,\n min_holes=1,\n min_height=0.2,\n min_width=0.2,\n p=0.5)\n ]),\n dict(\n type='GenerateTarget',\n encoder=dict(\n type='SimCCLabel',\n input_size=(288, 384),\n sigma=(6.0, 6.93),\n simcc_split_ratio=2.0,\n normalize=False,\n use_dark=False)),\n dict(type='PackPoseInputs')\n]\ndatasets = [\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='coco/annotations/coco_wholebody_train_v1.0.json',\n data_prefix=dict(img='coco/train2017/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Magic_show/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Magic_show/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Entertainment/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Entertainment/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/ConductMusic/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/ConductMusic/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Online_class/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Online_class/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/TalkShow/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/TalkShow/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Speech/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Speech/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Fitness/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Fitness/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Interview/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Interview/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Olympic/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Olympic/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/TVShow/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/TVShow/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Singing/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Singing/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/SignLanguage/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/SignLanguage/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Movie/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Movie/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/LiveVlog/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/LiveVlog/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/VideoConference/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/VideoConference/'),\n pipeline=[])\n]\ndataset_coco = dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='coco/annotations/coco_wholebody_train_v1.0.json',\n data_prefix=dict(img='coco/train2017/'),\n pipeline=[])\nscene = [\n 'Magic_show', 'Entertainment', 'ConductMusic', 'Online_class', 'TalkShow',\n 'Speech', 'Fitness', 'Interview', 'Olympic', 'TVShow', 'Singing',\n 'SignLanguage', 'Movie', 'LiveVlog', 'VideoConference'\n]\ni = 14\ntrain_dataloader = dict(\n batch_size=32,\n num_workers=10,\n persistent_workers=True,\n sampler=dict(type='DefaultSampler', shuffle=True),\n dataset=dict(\n type='CombinedDataset',\n metainfo=dict(from_file='configs/_base_/datasets/coco_wholebody.py'),\n datasets=[\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='coco/annotations/coco_wholebody_train_v1.0.json',\n data_prefix=dict(img='coco/train2017/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file=\n 'UBody/annotations/Magic_show/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Magic_show/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file=\n 'UBody/annotations/Entertainment/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Entertainment/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file=\n 'UBody/annotations/ConductMusic/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/ConductMusic/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file=\n 'UBody/annotations/Online_class/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Online_class/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/TalkShow/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/TalkShow/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Speech/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Speech/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Fitness/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Fitness/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Interview/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Interview/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Olympic/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Olympic/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/TVShow/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/TVShow/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Singing/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Singing/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file=\n 'UBody/annotations/SignLanguage/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/SignLanguage/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Movie/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Movie/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/LiveVlog/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/LiveVlog/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file=\n 'UBody/annotations/VideoConference/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/VideoConference/'),\n pipeline=[])\n ],\n pipeline=[\n dict(type='LoadImage', backend_args=dict(backend='local')),\n dict(type='GetBBoxCenterScale'),\n dict(type='RandomFlip', direction='horizontal'),\n dict(type='RandomHalfBody'),\n dict(\n type='RandomBBoxTransform',\n scale_factor=[0.6, 1.4],\n rotate_factor=80),\n dict(type='TopdownAffine', input_size=(288, 384)),\n dict(type='mmdet.YOLOXHSVRandomAug'),\n dict(\n type='Albumentation',\n transforms=[\n dict(type='Blur', p=0.1),\n dict(type='MedianBlur', p=0.1),\n dict(\n type='CoarseDropout',\n max_holes=1,\n max_height=0.4,\n max_width=0.4,\n min_holes=1,\n min_height=0.2,\n min_width=0.2,\n p=1.0)\n ]),\n dict(\n type='GenerateTarget',\n encoder=dict(\n type='SimCCLabel',\n input_size=(288, 384),\n sigma=(6.0, 6.93),\n simcc_split_ratio=2.0,\n normalize=False,\n use_dark=False)),\n dict(type='PackPoseInputs')\n ],\n test_mode=False))\nval_dataloader = dict(\n batch_size=32,\n num_workers=10,\n persistent_workers=True,\n drop_last=False,\n sampler=dict(type='DefaultSampler', shuffle=False, round_up=False),\n dataset=dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='coco/annotations/coco_wholebody_val_v1.0.json',\n bbox_file=\n '/data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json',\n data_prefix=dict(img='coco/val2017/'),\n test_mode=True,\n pipeline=[\n dict(type='LoadImage', backend_args=dict(backend='local')),\n dict(type='GetBBoxCenterScale'),\n dict(type='TopdownAffine', input_size=(288, 384)),\n dict(type='PackPoseInputs')\n ]))\ntest_dataloader = dict(\n batch_size=32,\n num_workers=10,\n persistent_workers=True,\n drop_last=False,\n sampler=dict(type='DefaultSampler', shuffle=False, round_up=False),\n dataset=dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='coco/annotations/coco_wholebody_val_v1.0.json',\n bbox_file=\n '/data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json',\n data_prefix=dict(img='coco/val2017/'),\n test_mode=True,\n pipeline=[\n dict(type='LoadImage', backend_args=dict(backend='local')),\n dict(type='GetBBoxCenterScale'),\n dict(type='TopdownAffine', input_size=(288, 384)),\n dict(type='PackPoseInputs')\n ]))\nval_evaluator = dict(\n type='CocoWholeBodyMetric',\n ann_file='/data/coco/annotations/coco_wholebody_val_v1.0.json')\ntest_evaluator = dict(\n type='CocoWholeBodyMetric',\n ann_file='/data/coco/annotations/coco_wholebody_val_v1.0.json')\nfind_unused_parameters = True\nmgd = True\nnkd = True\nlauncher = 'pytorch'\nwork_dir = './work_dirs/rtmpose_l-ll__coco-ubody-384x288'\n",
"seed": 21,
"experiment_name": "rtmpose_l-ll__coco-ubody-384x288_20230706_095637",
"time": "20230706_131003",
"mmengine_version": "0.7.2",
"dataset_meta": {
"dataset_name": "coco_wholebody",
"num_keypoints": 133,
"keypoint_colors": {
"type": "ndarray",
"repr": "array([[ 51, 153, 255],\n [ 51, 153, 255],\n [ 51, 153, 255],\n [ 51, 153, 255],\n [ 51, 153, 255],\n [ 0, 255, 0],\n [255, 128, 0],\n [ 0, 255, 0],\n [255, 128, 0],\n [ 0, 255, 0],\n [255, 128, 0],\n [ 0, 255, 0],\n [255, 128, 0],\n [ 0, 255, 0],\n [255, 128, 0],\n [ 0, 255, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 153, 255],\n [255, 153, 255],\n [255, 153, 255],\n [255, 153, 255],\n [102, 178, 255],\n [102, 178, 255],\n [102, 178, 255],\n [102, 178, 255],\n [255, 51, 51],\n [255, 51, 51],\n [255, 51, 51],\n [255, 51, 51],\n [ 0, 255, 0],\n [ 0, 255, 0],\n [ 0, 255, 0],\n [ 0, 255, 0],\n [255, 255, 255],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 153, 255],\n [255, 153, 255],\n [255, 153, 255],\n [255, 153, 255],\n [102, 178, 255],\n [102, 178, 255],\n [102, 178, 255],\n [102, 178, 255],\n [255, 51, 51],\n [255, 51, 51],\n [255, 51, 51],\n [255, 51, 51],\n [ 0, 255, 0],\n [ 0, 255, 0],\n [ 0, 255, 0],\n [ 0, 255, 0]], dtype=uint8)",
"dict": {},
},
"num_skeleton_links": 65,
"skeleton_link_colors": {
"type": "ndarray",
"repr": "array([[ 0, 255, 0],\n [ 0, 255, 0],\n [255, 128, 0],\n [255, 128, 0],\n [ 51, 153, 255],\n [ 51, 153, 255],\n [ 51, 153, 255],\n [ 51, 153, 255],\n [ 0, 255, 0],\n [255, 128, 0],\n [ 0, 255, 0],\n [255, 128, 0],\n [ 51, 153, 255],\n [ 51, 153, 255],\n [ 51, 153, 255],\n [ 51, 153, 255],\n [ 51, 153, 255],\n [ 51, 153, 255],\n [ 51, 153, 255],\n [ 0, 255, 0],\n [ 0, 255, 0],\n [ 0, 255, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 153, 255],\n [255, 153, 255],\n [255, 153, 255],\n [255, 153, 255],\n [102, 178, 255],\n [102, 178, 255],\n [102, 178, 255],\n [102, 178, 255],\n [255, 51, 51],\n [255, 51, 51],\n [255, 51, 51],\n [255, 51, 51],\n [ 0, 255, 0],\n [ 0, 255, 0],\n [ 0, 255, 0],\n [ 0, 255, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 153, 255],\n [255, 153, 255],\n [255, 153, 255],\n [255, 153, 255],\n [102, 178, 255],\n [102, 178, 255],\n [102, 178, 255],\n [102, 178, 255],\n [255, 51, 51],\n [255, 51, 51],\n [255, 51, 51],\n [255, 51, 51],\n [ 0, 255, 0],\n [ 0, 255, 0],\n [ 0, 255, 0],\n [ 0, 255, 0]], dtype=uint8)",
"dict": {},
},
"dataset_keypoint_weights": {
"type": "ndarray",
"repr": "array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,\n 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,\n 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,\n 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,\n 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,\n 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,\n 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,\n 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],\n dtype=float32)",
"dict": {},
},
"sigmas": {
"type": "ndarray",
"repr": "array([0.026, 0.025, 0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072,\n 0.062, 0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089, 0.068,\n 0.066, 0.066, 0.092, 0.094, 0.094, 0.042, 0.043, 0.044, 0.043,\n 0.04 , 0.035, 0.031, 0.025, 0.02 , 0.023, 0.029, 0.032, 0.037,\n 0.038, 0.043, 0.041, 0.045, 0.013, 0.012, 0.011, 0.011, 0.012,\n 0.012, 0.011, 0.011, 0.013, 0.015, 0.009, 0.007, 0.007, 0.007,\n 0.012, 0.009, 0.008, 0.016, 0.01 , 0.017, 0.011, 0.009, 0.011,\n 0.009, 0.007, 0.013, 0.008, 0.011, 0.012, 0.01 , 0.034, 0.008,\n 0.008, 0.009, 0.008, 0.008, 0.007, 0.01 , 0.008, 0.009, 0.009,\n 0.009, 0.007, 0.007, 0.008, 0.011, 0.008, 0.008, 0.008, 0.01 ,\n 0.008, 0.029, 0.022, 0.035, 0.037, 0.047, 0.026, 0.025, 0.024,\n 0.035, 0.018, 0.024, 0.022, 0.026, 0.017, 0.021, 0.021, 0.032,\n 0.02 , 0.019, 0.022, 0.031, 0.029, 0.022, 0.035, 0.037, 0.047,\n 0.026, 0.025, 0.024, 0.035, 0.018, 0.024, 0.022, 0.026, 0.017,\n 0.021, 0.021, 0.032, 0.02 , 0.019, 0.022, 0.031], dtype=float32)",
"dict": {},
},
"keypoint_id2name": {
"0": "nose",
"1": "left_eye",
"2": "right_eye",
"3": "left_ear",
"4": "right_ear",
"5": "left_shoulder",
"6": "right_shoulder",
"7": "left_elbow",
"8": "right_elbow",
"9": "left_wrist",
"10": "right_wrist",
"11": "left_hip",
"12": "right_hip",
"13": "left_knee",
"14": "right_knee",
"15": "left_ankle",
"16": "right_ankle",
"17": "left_big_toe",
"18": "left_small_toe",
"19": "left_heel",
"20": "right_big_toe",
"21": "right_small_toe",
"22": "right_heel",
"23": "face-0",
"24": "face-1",
"25": "face-2",
"26": "face-3",
"27": "face-4",
"28": "face-5",
"29": "face-6",
"30": "face-7",
"31": "face-8",
"32": "face-9",
"33": "face-10",
"34": "face-11",
"35": "face-12",
"36": "face-13",
"37": "face-14",
"38": "face-15",
"39": "face-16",
"40": "face-17",
"41": "face-18",
"42": "face-19",
"43": "face-20",
"44": "face-21",
"45": "face-22",
"46": "face-23",
"47": "face-24",
"48": "face-25",
"49": "face-26",
"50": "face-27",
"51": "face-28",
"52": "face-29",
"53": "face-30",
"54": "face-31",
"55": "face-32",
"56": "face-33",
"57": "face-34",
"58": "face-35",
"59": "face-36",
"60": "face-37",
"61": "face-38",
"62": "face-39",
"63": "face-40",
"64": "face-41",
"65": "face-42",
"66": "face-43",
"67": "face-44",
"68": "face-45",
"69": "face-46",
"70": "face-47",
"71": "face-48",
"72": "face-49",
"73": "face-50",
"74": "face-51",
"75": "face-52",
"76": "face-53",
"77": "face-54",
"78": "face-55",
"79": "face-56",
"80": "face-57",
"81": "face-58",
"82": "face-59",
"83": "face-60",
"84": "face-61",
"85": "face-62",
"86": "face-63",
"87": "face-64",
"88": "face-65",
"89": "face-66",
"90": "face-67",
"91": "left_hand_root",
"92": "left_thumb1",
"93": "left_thumb2",
"94": "left_thumb3",
"95": "left_thumb4",
"96": "left_forefinger1",
"97": "left_forefinger2",
"98": "left_forefinger3",
"99": "left_forefinger4",
"100": "left_middle_finger1",
"101": "left_middle_finger2",
"102": "left_middle_finger3",
"103": "left_middle_finger4",
"104": "left_ring_finger1",
"105": "left_ring_finger2",
"106": "left_ring_finger3",
"107": "left_ring_finger4",
"108": "left_pinky_finger1",
"109": "left_pinky_finger2",
"110": "left_pinky_finger3",
"111": "left_pinky_finger4",
"112": "right_hand_root",
"113": "right_thumb1",
"114": "right_thumb2",
"115": "right_thumb3",
"116": "right_thumb4",
"117": "right_forefinger1",
"118": "right_forefinger2",
"119": "right_forefinger3",
"120": "right_forefinger4",
"121": "right_middle_finger1",
"122": "right_middle_finger2",
"123": "right_middle_finger3",
"124": "right_middle_finger4",
"125": "right_ring_finger1",
"126": "right_ring_finger2",
"127": "right_ring_finger3",
"128": "right_ring_finger4",
"129": "right_pinky_finger1",
"130": "right_pinky_finger2",
"131": "right_pinky_finger3",
"132": "right_pinky_finger4",
},
"keypoint_name2id": {
"nose": 0,
"left_eye": 1,
"right_eye": 2,
"left_ear": 3,
"right_ear": 4,
"left_shoulder": 5,
"right_shoulder": 6,
"left_elbow": 7,
"right_elbow": 8,
"left_wrist": 9,
"right_wrist": 10,
"left_hip": 11,
"right_hip": 12,
"left_knee": 13,
"right_knee": 14,
"left_ankle": 15,
"right_ankle": 16,
"left_big_toe": 17,
"left_small_toe": 18,
"left_heel": 19,
"right_big_toe": 20,
"right_small_toe": 21,
"right_heel": 22,
"face-0": 23,
"face-1": 24,
"face-2": 25,
"face-3": 26,
"face-4": 27,
"face-5": 28,
"face-6": 29,
"face-7": 30,
"face-8": 31,
"face-9": 32,
"face-10": 33,
"face-11": 34,
"face-12": 35,
"face-13": 36,
"face-14": 37,
"face-15": 38,
"face-16": 39,
"face-17": 40,
"face-18": 41,
"face-19": 42,
"face-20": 43,
"face-21": 44,
"face-22": 45,
"face-23": 46,
"face-24": 47,
"face-25": 48,
"face-26": 49,
"face-27": 50,
"face-28": 51,
"face-29": 52,
"face-30": 53,
"face-31": 54,
"face-32": 55,
"face-33": 56,
"face-34": 57,
"face-35": 58,
"face-36": 59,
"face-37": 60,
"face-38": 61,
"face-39": 62,
"face-40": 63,
"face-41": 64,
"face-42": 65,
"face-43": 66,
"face-44": 67,
"face-45": 68,
"face-46": 69,
"face-47": 70,
"face-48": 71,
"face-49": 72,
"face-50": 73,
"face-51": 74,
"face-52": 75,
"face-53": 76,
"face-54": 77,
"face-55": 78,
"face-56": 79,
"face-57": 80,
"face-58": 81,
"face-59": 82,
"face-60": 83,
"face-61": 84,
"face-62": 85,
"face-63": 86,
"face-64": 87,
"face-65": 88,
"face-66": 89,
"face-67": 90,
"left_hand_root": 91,
"left_thumb1": 92,
"left_thumb2": 93,
"left_thumb3": 94,
"left_thumb4": 95,
"left_forefinger1": 96,
"left_forefinger2": 97,
"left_forefinger3": 98,
"left_forefinger4": 99,
"left_middle_finger1": 100,
"left_middle_finger2": 101,
"left_middle_finger3": 102,
"left_middle_finger4": 103,
"left_ring_finger1": 104,
"left_ring_finger2": 105,
"left_ring_finger3": 106,
"left_ring_finger4": 107,
"left_pinky_finger1": 108,
"left_pinky_finger2": 109,
"left_pinky_finger3": 110,
"left_pinky_finger4": 111,
"right_hand_root": 112,
"right_thumb1": 113,
"right_thumb2": 114,
"right_thumb3": 115,
"right_thumb4": 116,
"right_forefinger1": 117,
"right_forefinger2": 118,
"right_forefinger3": 119,
"right_forefinger4": 120,
"right_middle_finger1": 121,
"right_middle_finger2": 122,
"right_middle_finger3": 123,
"right_middle_finger4": 124,
"right_ring_finger1": 125,
"right_ring_finger2": 126,
"right_ring_finger3": 127,
"right_ring_finger4": 128,
"right_pinky_finger1": 129,
"right_pinky_finger2": 130,
"right_pinky_finger3": 131,
"right_pinky_finger4": 132,
},
"upper_body_ids": {
"0": 0,
"1": 1,
"2": 2,
"3": 3,
"4": 4,
"5": 5,
"6": 6,
"7": 7,
"8": 8,
"9": 9,
"10": 10,
},
"lower_body_ids": {
"0": 11,
"1": 12,
"2": 13,
"3": 14,
"4": 15,
"5": 16,
"6": 17,
"7": 18,
"8": 19,
"9": 20,
"10": 21,
"11": 22,
},
"flip_indices": {
"0": 0,
"1": 2,
"2": 1,
"3": 4,
"4": 3,
"5": 6,
"6": 5,
"7": 8,
"8": 7,
"9": 10,
"10": 9,
"11": 12,
"12": 11,
"13": 14,
"14": 13,
"15": 16,
"16": 15,
"17": 20,
"18": 21,
"19": 22,
"20": 17,
"21": 18,
"22": 19,
"23": 39,
"24": 38,
"25": 37,
"26": 36,
"27": 35,
"28": 34,
"29": 33,
"30": 32,
"31": 31,
"32": 30,
"33": 29,
"34": 28,
"35": 27,
"36": 26,
"37": 25,
"38": 24,
"39": 23,
"40": 49,
"41": 48,
"42": 47,
"43": 46,
"44": 45,
"45": 44,
"46": 43,
"47": 42,
"48": 41,
"49": 40,
"50": 50,
"51": 51,
"52": 52,
"53": 53,
"54": 58,
"55": 57,
"56": 56,
"57": 55,
"58": 54,
"59": 68,
"60": 67,
"61": 66,
"62": 65,
"63": 70,
"64": 69,
"65": 62,
"66": 61,
"67": 60,
"68": 59,
"69": 64,
"70": 63,
"71": 77,
"72": 76,
"73": 75,
"74": 74,
"75": 73,
"76": 72,
"77": 71,
"78": 82,
"79": 81,
"80": 80,
"81": 79,
"82": 78,
"83": 87,
"84": 86,
"85": 85,
"86": 84,
"87": 83,
"88": 90,
"89": 89,
"90": 88,
"91": 112,
"92": 113,
"93": 114,
"94": 115,
"95": 116,
"96": 117,
"97": 118,
"98": 119,
"99": 120,
"100": 121,
"101": 122,
"102": 123,
"103": 124,
"104": 125,
"105": 126,
"106": 127,
"107": 128,
"108": 129,
"109": 130,
"110": 131,
"111": 132,
"112": 91,
"113": 92,
"114": 93,
"115": 94,
"116": 95,
"117": 96,
"118": 97,
"119": 98,
"120": 99,
"121": 100,
"122": 101,
"123": 102,
"124": 103,
"125": 104,
"126": 105,
"127": 106,
"128": 107,
"129": 108,
"130": 109,
"131": 110,
"132": 111,
},
"flip_pairs": {
"0": (2, 1),
"1": (1, 2),
"2": (4, 3),
"3": (3, 4),
"4": (6, 5),
"5": (5, 6),
"6": (8, 7),
"7": (7, 8),
"8": (10, 9),
"9": (9, 10),
"10": (12, 11),
"11": (11, 12),
"12": (14, 13),
"13": (13, 14),
"14": (16, 15),
"15": (15, 16),
"16": (20, 17),
"17": (21, 18),
"18": (22, 19),
"19": (17, 20),
"20": (18, 21),
"21": (19, 22),
"22": (39, 23),
"23": (38, 24),
"24": (37, 25),
"25": (36, 26),
"26": (35, 27),
"27": (34, 28),
"28": (33, 29),
"29": (32, 30),
"30": (30, 32),
"31": (29, 33),
"32": (28, 34),
"33": (27, 35),
"34": (26, 36),
"35": (25, 37),
"36": (24, 38),
"37": (23, 39),
"38": (49, 40),
"39": (48, 41),
"40": (47, 42),
"41": (46, 43),
"42": (45, 44),
"43": (44, 45),
"44": (43, 46),
"45": (42, 47),
"46": (41, 48),
"47": (40, 49),
"48": (58, 54),
"49": (57, 55),
"50": (55, 57),
"51": (54, 58),
"52": (68, 59),
"53": (67, 60),
"54": (66, 61),
"55": (65, 62),
"56": (70, 63),
"57": (69, 64),
"58": (62, 65),
"59": (61, 66),
"60": (60, 67),
"61": (59, 68),
"62": (64, 69),
"63": (63, 70),
"64": (77, 71),
"65": (76, 72),
"66": (75, 73),
"67": (73, 75),
"68": (72, 76),
"69": (71, 77),
"70": (82, 78),
"71": (81, 79),
"72": (79, 81),
"73": (78, 82),
"74": (87, 83),
"75": (86, 84),
"76": (84, 86),
"77": (83, 87),
"78": (90, 88),
"79": (88, 90),
"80": (112, 91),
"81": (113, 92),
"82": (114, 93),
"83": (115, 94),
"84": (116, 95),
"85": (117, 96),
"86": (118, 97),
"87": (119, 98),
"88": (120, 99),
"89": (121, 100),
"90": (122, 101),
"91": (123, 102),
"92": (124, 103),
"93": (125, 104),
"94": (126, 105),
"95": (127, 106),
"96": (128, 107),
"97": (129, 108),
"98": (130, 109),
"99": (131, 110),
"100": (132, 111),
"101": (91, 112),
"102": (92, 113),
"103": (93, 114),
"104": (94, 115),
"105": (95, 116),
"106": (96, 117),
"107": (97, 118),
"108": (98, 119),
"109": (99, 120),
"110": (100, 121),
"111": (101, 122),
"112": (102, 123),
"113": (103, 124),
"114": (104, 125),
"115": (105, 126),
"116": (106, 127),
"117": (107, 128),
"118": (108, 129),
"119": (109, 130),
"120": (110, 131),
"121": (111, 132),
},
"skeleton_links": {
"0": (15, 13),
"1": (13, 11),
"2": (16, 14),
"3": (14, 12),
"4": (11, 12),
"5": (5, 11),
"6": (6, 12),
"7": (5, 6),
"8": (5, 7),
"9": (6, 8),
"10": (7, 9),
"11": (8, 10),
"12": (1, 2),
"13": (0, 1),
"14": (0, 2),
"15": (1, 3),
"16": (2, 4),
"17": (3, 5),
"18": (4, 6),
"19": (15, 17),
"20": (15, 18),
"21": (15, 19),
"22": (16, 20),
"23": (16, 21),
"24": (16, 22),
"25": (91, 92),
"26": (92, 93),
"27": (93, 94),
"28": (94, 95),
"29": (91, 96),
"30": (96, 97),
"31": (97, 98),
"32": (98, 99),
"33": (91, 100),
"34": (100, 101),
"35": (101, 102),
"36": (102, 103),
"37": (91, 104),
"38": (104, 105),
"39": (105, 106),
"40": (106, 107),
"41": (91, 108),
"42": (108, 109),
"43": (109, 110),
"44": (110, 111),
"45": (112, 113),
"46": (113, 114),
"47": (114, 115),
"48": (115, 116),
"49": (112, 117),
"50": (117, 118),
"51": (118, 119),
"52": (119, 120),
"53": (112, 121),
"54": (121, 122),
"55": (122, 123),
"56": (123, 124),
"57": (112, 125),
"58": (125, 126),
"59": (126, 127),
"60": (127, 128),
"61": (112, 129),
"62": (129, 130),
"63": (130, 131),
"64": (131, 132),
},
},
},
"message_hub": {
"log_scalars": {
"train/lr": {
"type": "HistoryBuffer",
"repr": "<mmengine.logging.history_buffer.HistoryBuffer object at 0x73290b549d20>",
"dict": {
"max_length": 1000000,
"_log_history": array(
[
4.00000000e-08,
4.04396396e-06,
8.04792793e-06,
...,
4.00000000e-03,
4.00000000e-03,
4.00000000e-03,
]
),
"_count_history": array([1, 1, 1, ..., 1, 1, 1]),
},
},
"train/data_time": {
"type": "HistoryBuffer",
"repr": "<mmengine.logging.history_buffer.HistoryBuffer object at 0x73290b549e10>",
"dict": {
"max_length": 1000000,
"_log_history": array(
[
3.95293117,
0.0074091,
0.00770521,
...,
0.00679278,
0.00740361,
0.00745177,
]
),
"_count_history": array([1, 1, 1, ..., 1, 1, 1]),
},
},
"train/grad_norm": {
"type": "HistoryBuffer",
"repr": "<mmengine.logging.history_buffer.HistoryBuffer object at 0x73290b549e70>",
"dict": {
"max_length": 1000000,
"_log_history": array(
[
11.11996365,
11.15369606,
49.0441246,
...,
0.25355035,
0.2090449,
0.11485825,
]
),
"_count_history": array([1, 1, 1, ..., 1, 1, 1]),
},
},
"train/loss": {
"type": "HistoryBuffer",
"repr": "<mmengine.logging.history_buffer.HistoryBuffer object at 0x73290b549f00>",
"dict": {
"max_length": 1000000,
"_log_history": array(
[
5.68249035,
5.0594511,
5.4551425,
...,
0.01963938,
0.01610118,
0.01636601,
]
),
"_count_history": array([1, 1, 1, ..., 1, 1, 1]),
},
},
"train/loss_mgd": {
"type": "HistoryBuffer",
"repr": "<mmengine.logging.history_buffer.HistoryBuffer object at 0x73290b549f30>",
"dict": {
"max_length": 1000000,
"_log_history": array([0.0, 0.0, 0.0, ..., 0.0, 0.0, 0.0]),
"_count_history": array([1, 1, 1, ..., 1, 1, 1]),
},
},
"train/loss_nkd": {
"type": "HistoryBuffer",
"repr": "<mmengine.logging.history_buffer.HistoryBuffer object at 0x73290b54a050>",
"dict": {
"max_length": 1000000,
"_log_history": array(
[
5.68249035,
5.0594511,
5.4551425,
...,
0.01963938,
0.01610118,
0.01636601,
]
),
"_count_history": array([1, 1, 1, ..., 1, 1, 1]),
},
},
"train/time": {
"type": "HistoryBuffer",
"repr": "<mmengine.logging.history_buffer.HistoryBuffer object at 0x73290b54a4a0>",
"dict": {
"max_length": 1000000,
"_log_history": array(
[
4.91398549,
0.79516959,
0.71079898,
...,
0.30416846,
0.30426216,
0.2064755,
]
),
"_count_history": array([1, 1, 1, ..., 1, 1, 1]),
},
},
"val/data_time": {
"type": "HistoryBuffer",
"repr": "<mmengine.logging.history_buffer.HistoryBuffer object at 0x7329099cb010>",
"dict": {
"max_length": 1000000,
"_log_history": array(
[
1.47744179,
0.00316739,
0.02906036,
0.0020175,
0.06879759,
0.00192761,
0.00177884,
0.0019176,
0.00189304,
0.06297088,
0.13750148,
0.00214744,
0.08554554,
0.00192618,
0.07338119,
0.00180912,
0.00192857,
0.00173521,
0.00198412,
0.03363252,
0.12986469,
0.00204635,
0.08262658,
0.00196457,
0.05943441,
0.00195146,
0.00202107,
0.00194573,
0.00204587,
0.03186965,
0.12682581,
0.00199747,
0.09326196,
0.00191426,
0.05833673,
0.001966,
0.00191307,
0.00218177,
0.0020752,
0.03238249,
0.12625265,
0.00182629,
0.08623958,
0.00196886,
0.06152105,
0.00205874,
0.00179124,
0.00197077,
0.0018785,
0.03343606,
0.13127255,
0.00182199,
0.08809018,
0.00199485,
0.06871533,
0.00206208,
0.00200915,
0.00219369,
0.00190544,
0.04403353,
0.11918569,
0.00205684,
0.08583951,
0.00192833,
0.06924176,
0.00198174,
0.00179362,
0.00192404,
0.0018549,
0.03635216,
0.11691809,
0.00197339,
0.08333874,
0.00205708,
0.06999922,
0.00202775,
0.00200152,
0.00194836,
0.00207043,
0.03334498,
0.11875772,
0.0018549,
0.08297753,
0.00195312,
0.07152581,
0.00202441,
0.00200534,
0.00199294,
0.00198007,
0.03561354,
0.11900854,
0.00195193,
0.09063125,
0.00196934,
0.07264352,
0.00203276,
0.00198436,
0.00201416,
0.00195312,
0.03830624,
0.12220502,
0.00175047,
0.10234404,
0.00186467,
0.06526279,
0.00209951,
0.00194144,
0.00260091,
0.00199866,
0.03196359,
0.13335443,
0.00197029,
0.10349679,
0.00189662,
0.06753588,
0.00204611,
0.00206614,
0.00204206,
0.00604582,
0.03769493,
0.12512541,
0.00185943,
0.09661746,
0.00196123,
0.06805897,
0.00203204,
0.00200987,
0.0020287,
0.002249,
0.03546643,
0.12469983,
0.00194216,
0.10205746,
0.00200677,
0.06417751,
0.00195241,
0.00187564,
0.0020268,
0.00204587,
0.03659987,
0.12423182,
0.00197554,
0.09105754,
0.00182152,
0.06506276,
0.00193286,
0.00220752,
0.00208735,
0.00203109,
0.02984238,
0.13096952,
0.00189471,
0.10014105,
0.00193787,
0.06434989,
0.00186539,
0.0020299,
0.00258279,
0.00198746,
0.03235316,
0.13156176,
0.00188994,
0.31807137,
0.00195837,
0.05942225,
0.00178337,
0.00194836,
0.0017488,
0.00194836,
0.0318954,
0.13475227,
0.00185561,
0.09329176,
0.00193024,
0.06253695,
0.00198555,
0.00198007,
0.00204992,
0.00200462,
0.0329771,
0.12815547,
0.00202322,
0.09558058,
0.00199485,
0.05368853,
0.00182343,
0.00192261,
0.00203085,
0.00202465,
0.03354144,
0.11547136,
0.00191784,
0.09216213,
0.00279331,
0.06041622,
0.00186992,
0.00215554,
0.00210905,
0.00206828,
0.03118777,
0.10724878,
0.00212955,
0.08734512,
0.0019238,
0.06167483,
0.00175571,
0.00206041,
0.00204659,
0.00222683,
0.03199935,
0.10881948,
0.00210905,
0.0949719,
0.00198746,
0.06195688,
0.00192738,
0.00203586,
0.00233316,
0.00204325,
0.03177953,
0.12731242,
0.00189495,
0.1193614,
0.00186276,
0.06221581,
0.00195432,
0.00196457,
0.00223327,
0.00196385,
0.03018069,
0.13117361,
0.0019331,
0.08740425,
0.00196123,
0.05874848,
0.00174642,
0.00202942,
0.00206804,
0.00204372,
0.03373623,
0.13102603,
0.00187111,
0.09270334,
0.00186181,
0.06286645,
0.00176549,
0.00174689,
0.00291705,
0.00197935,
0.0315063,
0.1370554,
0.00173688,
0.09211826,
0.00191092,
0.06521511,
0.00180054,
0.0016911,
0.00307393,
0.00196624,
0.02692199,
0.12286973,
0.00203872,
0.08835769,
0.00192857,
0.05818439,
0.00176716,
0.00175095,
0.00195074,
0.00179577,
0.03165555,
0.1309855,
0.00181246,
0.08928084,
0.00189209,
0.05669618,
0.0018394,
0.00176454,
0.00208783,
0.00176263,
0.03079629,
0.10864806,
0.00195551,
0.09387875,
0.00193477,
0.06505013,
0.00198674,
0.00194025,
0.0020659,
0.00249863,
0.03436542,
0.12449789,
0.00196147,
0.09171534,
0.00183201,
0.06497216,
0.00201368,
0.0019629,
0.00204992,
0.00189948,
0.02466297,
0.12291718,
0.0017395,
0.1006248,
0.00180221,
0.0594449,
0.00186348,
0.00213671,
0.00203466,
0.00198507,
0.02406883,
0.11396098,
0.00184751,
0.10133624,
0.00186777,
0.07067561,
0.0020647,
0.00195503,
0.00209045,
0.00197649,
0.02368283,
0.11904931,
0.00190568,
0.09550023,
0.0016799,
0.07495761,
0.00190496,
0.00197101,
0.00207734,
0.00206161,
0.03298855,
0.11649346,
0.00198555,
0.09497046,
0.00180554,
0.06580138,
0.00185943,
0.00231504,
0.00209904,
0.00205135,
0.02516103,
0.1223762,
0.00273085,
0.09882188,
0.00179219,
0.06333375,
0.00182867,
0.00204492,
0.0020206,
0.00209546,
0.0316062,
0.12984633,
0.00202632,
0.09642792,
0.00184369,
0.06027317,
0.00184512,
0.00197649,
0.00176549,
0.00214505,
0.03454709,
0.13127899,
0.00218081,
0.09881902,
0.00168705,
0.06654906,
0.0019424,
0.00197625,
0.00194693,
0.00195813,
0.03715682,
0.13207912,
0.00186062,
0.09636188,
0.00214171,
0.07180452,
0.00188136,
0.00196385,
0.00194216,
0.00196862,
0.03592992,
0.14072061,
0.00187039,
0.0911727,
0.00186372,
0.07167292,
0.00211525,
0.00298381,
0.00187612,
0.00182271,
0.0341928,
0.10658956,
0.00172353,
0.07325006,
0.00173497,
0.06289196,
0.00169611,
0.00178838,
0.00171781,
0.00176764,
0.01166058,
0.03083849,
0.00174546,
0.02043772,
0.00171232,
0.01844621,
0.00170493,
0.00174546,
0.28942633,
0.00210929,
0.08796358,
0.00198007,
0.05707955,
0.0019424,
0.00210452,
0.00294161,
0.00200057,
0.00205755,
0.12438798,
0.0350039,
0.10707188,
0.00202203,
0.0588131,
0.00196958,
0.00206304,
0.00210071,
0.00195527,
0.00196505,
0.12865281,
0.03324389,
0.10751748,
0.00192881,
0.06270051,
0.0019412,
0.00206161,
0.00201631,
0.00197077,
0.00196719,
0.11851501,
0.0335412,
0.09549284,
0.00189543,
0.06345654,
0.00205445,
0.00198746,
0.00206614,
0.00203276,
0.00200558,
0.13306785,
0.031389,
0.09617877,
0.00192785,
0.05974865,
0.00193191,
0.00193405,
0.00212646,
0.00208211,
0.00203991,
0.13511562,
0.0304594,
0.10126495,
0.00198245,
0.06773019,
0.00188804,
0.00200891,
0.00209355,
0.00216889,
0.00203133,
0.13160563,
0.03324699,
0.08537006,
0.00199056,
0.06871319,
0.00183272,
0.00199389,
0.00219846,
0.00210476,
0.002033,
0.12883997,
0.03278637,
0.10213256,
0.00190997,
0.06907701,
0.00196505,
0.00189543,
0.00203609,
0.00196671,
0.00207067,
0.12446189,
0.03413558,
0.09468222,
0.00192738,
0.06509805,
0.00220466,
0.00202227,
0.00201249,
0.00199294,
0.00193501,
0.13129306,
0.03037405,
0.09303951,
0.00201893,
0.06349874,
0.00277781,
0.00197172,
0.00225973,
0.00195479,
0.0020957,
0.12780452,
0.0305512,
0.09060717,
0.00265622,
0.06727171,
0.00199819,
0.00201678,
0.00205994,
0.00206804,
0.0020411,
0.12281919,
0.03157282,
0.09610724,
0.00187564,
0.06919527,
0.00231957,
0.00194979,
0.00202179,
0.00200129,
0.00203109,
0.1259768,
0.03354979,
0.10020304,
0.00199389,
0.06033134,
0.00219917,
0.00219917,
0.0021255,
0.00203156,
0.00215602,
0.12083697,
0.02740216,
0.0888679,
0.00187492,
0.06669712,
0.00194907,
0.00204873,
0.00206065,
0.00194645,
0.00198436,
0.12107801,
0.03700423,
0.09250355,
0.00196314,
0.06020808,
0.00196838,
0.00212526,
0.00215673,
0.00200891,
0.00193262,
0.12489915,
0.0320611,
0.09533501,
0.00191522,
0.06554961,
0.00198555,
0.00201249,
0.00210571,
0.00209785,
0.00205302,
0.1318984,
0.03339934,
0.10465932,
0.00187707,
0.05355215,
0.00200343,
0.00216055,
0.00204349,
0.00207305,
0.00197864,
0.12497306,
0.03529429,
0.09504151,
0.00189996,
0.06069684,
0.00191903,
0.00198555,
0.00199008,
0.00203919,
0.00202608,
0.12467456,
0.03005862,
0.09427476,
0.00190616,
0.06278515,
0.00195765,
0.00197959,
0.00208402,
0.00208068,
0.00207925,
0.12335038,
0.03136706,
0.09919071,
0.00196838,
0.0616982,
0.00194669,
0.00219965,
0.00206757,
0.0020206,
0.00199819,
0.12248588,
0.03042579,
0.09100866,
0.00186133,
0.06587553,
0.00197029,
0.00201488,
0.0020299,
0.00207186,
0.00199461,
0.12549305,
0.03181362,
0.09423637,
0.00183916,
0.06417871,
0.00199986,
0.00196886,
0.00196552,
0.00195956,
0.00192952,
0.11075449,
0.03224397,
0.09273243,
0.00200415,
0.06513691,
0.00186372,
0.00197816,
0.00195909,
0.00192618,
0.00202918,
0.11159253,
0.03377128,
0.08992624,
0.00224233,
0.06518936,
0.001899,
0.00194883,
0.00200176,
0.00188494,
0.00204992,
0.10851312,
0.03179598,
0.09129477,
0.00242805,
0.0754528,
0.00196624,
0.00198507,
0.00204062,
0.00195742,
0.00196099,
0.12793684,
0.03274345,
0.09250331,
0.00194597,
0.06700039,
0.00193071,
0.00186872,
0.00190568,
0.00198007,
0.00199342,
0.11618471,
0.03161407,
0.10525537,
0.00203204,
0.06226444,
0.00183153,
0.00276947,
0.00210786,
0.00193405,
0.0019896,
0.11430502,
0.03147507,
0.10392022,
0.00190091,
0.06455302,
0.00182056,
0.00187922,
0.00197315,
0.00189042,
0.00207615,
0.12533283,
0.03288865,
0.08963108,
0.00197601,
0.06132984,
0.00184774,
0.00222349,
0.00214434,
0.00192308,
0.00203443,
0.12382221,
0.03634739,
0.10105991,
0.00187206,
0.06379485,
0.00197268,
0.00194788,
0.00191998,
0.00203204,
0.00195336,
0.12129331,
0.03108001,
0.09610581,
0.00197339,
0.06170416,
0.00202823,
0.00195909,
0.00195813,
0.00188923,
0.00207186,
0.12810922,
0.03404593,
0.08778358,
0.00201702,
0.06465006,
0.00200486,
0.00217962,
0.00191617,
0.00206828,
0.0021081,
0.12212396,
0.03195238,
0.09062314,
0.00192451,
0.06155896,
0.00199509,
0.00197244,
0.0019381,
0.00190687,
0.00204396,
0.12243652,
0.03270078,
0.10088348,
0.00195742,
0.06257415,
0.00207615,
0.0024569,
0.00272202,
0.00185251,
0.00200462,
0.11363673,
0.03408885,
0.0962894,
0.00200582,
0.06510806,
0.00191975,
0.00191545,
0.00198507,
0.00180602,
0.00200129,
0.12553644,
0.03332615,
0.09494352,
0.0018096,
0.06218243,
0.00192285,
0.00200629,
0.00188518,
0.00181365,
0.00193191,
0.13264346,
0.03438807,
0.09687805,
0.00196671,
0.06515694,
0.00192904,
0.00187874,
0.0019505,
0.00190139,
0.00200987,
0.12820816,
0.03455138,
0.10553265,
0.00192285,
0.05829406,
0.00188112,
0.00192094,
0.00191736,
0.00185013,
0.0019505,
0.12898231,
0.03460813,
0.09554291,
0.00192761,
0.06150246,
0.00189948,
0.00255871,
0.00189948,
0.00188184,
0.00183105,
0.11423349,
0.033324,
0.07136035,
0.00175929,
0.03881168,
0.00175261,
0.00178576,
0.00183392,
0.00180531,
0.00182509,
0.02880025,
0.01146603,
0.01812148,
0.00172591,
0.00921631,
0.001719,
0.00178003,
]
),
"_count_history": array(
[
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
]
),
},
},
"val/time": {
"type": "HistoryBuffer",
"repr": "<mmengine.logging.history_buffer.HistoryBuffer object at 0x7329099cb100>",
"dict": {
"max_length": 1000000,
"_log_history": array(
[
1.65406394,
0.15298462,
0.17894912,
0.15018582,
0.22374821,
0.15166163,
0.15954208,
0.15080047,
0.15198636,
0.22284365,
0.28916621,
0.15455174,
0.23404741,
0.15312123,
0.22179961,
0.15131712,
0.15090847,
0.15097022,
0.15142655,
0.18237424,
0.278651,
0.15118885,
0.2310133,
0.15293741,
0.20766687,
0.1513505,
0.15198827,
0.15201473,
0.15094972,
0.18070602,
0.2757163,
0.1521523,
0.24353909,
0.15342617,
0.20844221,
0.15075731,
0.15504789,
0.15139151,
0.15126348,
0.18140316,
0.27431941,
0.1510632,
0.23471475,
0.15296364,
0.2102108,
0.15339732,
0.15122175,
0.15078998,
0.1512742,
0.18330073,
0.28230453,
0.1511488,
0.23654151,
0.15293336,
0.22087479,
0.15043354,
0.15128326,
0.15966225,
0.1516273,
0.19366169,
0.2691021,
0.15201211,
0.23481631,
0.15412378,
0.21785307,
0.15421963,
0.15097499,
0.15107679,
0.15117836,
0.18477798,
0.26537251,
0.1508081,
0.23176098,
0.15247321,
0.22037435,
0.1507113,
0.15216565,
0.15131617,
0.15447736,
0.18194866,
0.26685667,
0.15121841,
0.23173475,
0.1526587,
0.22157264,
0.15116596,
0.15043497,
0.15114617,
0.15139985,
0.18373013,
0.26835203,
0.15167475,
0.24085665,
0.15404701,
0.22612619,
0.15076447,
0.15161371,
0.15134358,
0.15247273,
0.19019532,
0.27151537,
0.15527844,
0.25115967,
0.15217423,
0.21433973,
0.15038252,
0.15071082,
0.15141678,
0.15542531,
0.18890262,
0.28155208,
0.15512753,
0.25917125,
0.15113997,
0.21753812,
0.15213251,
0.15209103,
0.15171838,
0.15552092,
0.18631673,
0.27726173,
0.15395904,
0.25066471,
0.15300345,
0.21681333,
0.15196347,
0.15147686,
0.15122032,
0.15130711,
0.18454647,
0.27299547,
0.15159392,
0.25043583,
0.15172911,
0.21349382,
0.15254903,
0.15059948,
0.1552887,
0.1511786,
0.18474436,
0.27429795,
0.15131807,
0.2409811,
0.15147424,
0.21532559,
0.15180206,
0.15175676,
0.15445137,
0.1510222,
0.18014932,
0.2804997,
0.15157366,
0.248492,
0.15234756,
0.2142055,
0.15094733,
0.15122485,
0.15394258,
0.15112066,
0.18107677,
0.2796061,
0.15122938,
0.46642852,
0.15216899,
0.21202517,
0.15058875,
0.15187073,
0.15125513,
0.15113378,
0.18095326,
0.28503752,
0.1516583,
0.24301147,
0.15330172,
0.21139765,
0.15119314,
0.15105844,
0.15203452,
0.1515913,
0.18179727,
0.27704024,
0.15232158,
0.24491334,
0.15231514,
0.20334435,
0.15142679,
0.15349436,
0.15150857,
0.15171456,
0.18259025,
0.26412559,
0.15157771,
0.24314523,
0.15606689,
0.21066093,
0.15211177,
0.15127277,
0.15137649,
0.15181971,
0.18088555,
0.25608444,
0.15174985,
0.23738551,
0.15628839,
0.21231985,
0.15419388,
0.15209222,
0.15158916,
0.15152359,
0.18029904,
0.25734138,
0.15091228,
0.24439335,
0.15147138,
0.2118845,
0.1510644,
0.15118432,
0.15147042,
0.1511364,
0.17956734,
0.27740645,
0.15143323,
0.26808977,
0.15123224,
0.21054626,
0.15639377,
0.15123415,
0.15141416,
0.15093732,
0.17854285,
0.28426957,
0.15158892,
0.23718071,
0.15145755,
0.20892978,
0.15132976,
0.15171003,
0.15130138,
0.15083957,
0.18365645,
0.27966094,
0.15104485,
0.2414012,
0.15152049,
0.21208596,
0.15051293,
0.15526509,
0.15317774,
0.15130234,
0.17993975,
0.29087186,
0.1509459,
0.24138284,
0.15120316,
0.21434307,
0.15073013,
0.15498924,
0.15272427,
0.15144205,
0.17483306,
0.27662992,
0.15015936,
0.23734879,
0.15128469,
0.20650983,
0.15039992,
0.15097833,
0.15092993,
0.15117741,
0.18117476,
0.27887893,
0.15064216,
0.23786926,
0.15121078,
0.20588326,
0.15097904,
0.1513629,
0.15154886,
0.1506207,
0.18041062,
0.25657773,
0.15113211,
0.24821639,
0.15099883,
0.21447539,
0.15191603,
0.15161705,
0.15471768,
0.15698552,
0.18663836,
0.27444339,
0.15157247,
0.24130321,
0.15145087,
0.21351552,
0.15097141,
0.15106058,
0.1511209,
0.15135407,
0.17344069,
0.27158403,
0.15041852,
0.2506814,
0.15144944,
0.2096808,
0.15113735,
0.15230107,
0.15204477,
0.15164137,
0.17369771,
0.26364899,
0.15174532,
0.25010729,
0.1515069,
0.22025156,
0.15155387,
0.15541553,
0.15160656,
0.15082812,
0.17333603,
0.27140045,
0.15121174,
0.24581599,
0.15081096,
0.22350097,
0.15080667,
0.15194535,
0.15165877,
0.15135169,
0.18339968,
0.26521921,
0.15074944,
0.24364305,
0.15102291,
0.21625495,
0.15901089,
0.15654993,
0.15077066,
0.15061378,
0.17326975,
0.27540326,
0.15712667,
0.24755025,
0.15116882,
0.21688771,
0.15377545,
0.15123129,
0.15128827,
0.15102434,
0.18013334,
0.27898765,
0.15063453,
0.24524355,
0.15084624,
0.20908117,
0.1552496,
0.15088058,
0.15088129,
0.15085673,
0.18244839,
0.27929926,
0.15011239,
0.24641919,
0.15030217,
0.21533608,
0.15028596,
0.15036321,
0.1502037,
0.15008283,
0.18520594,
0.28000855,
0.1506722,
0.24494195,
0.15035725,
0.22073317,
0.15124774,
0.15011168,
0.14996409,
0.14979935,
0.18269563,
0.28798628,
0.14966273,
0.23815703,
0.14943767,
0.22142029,
0.15150976,
0.15046763,
0.14901733,
0.1480968,
0.18132901,
0.25504231,
0.1476686,
0.22150493,
0.1476748,
0.2110939,
0.15118456,
0.14767361,
0.14787865,
0.14778352,
0.15752316,
0.17671108,
0.14755011,
0.16656446,
0.14807677,
0.16403627,
0.14806724,
0.09975243,
0.44508839,
0.15288424,
0.23843813,
0.1510601,
0.20852637,
0.15200019,
0.16354513,
0.15745807,
0.15224552,
0.15745854,
0.27303839,
0.18377995,
0.26093411,
0.15142822,
0.21346569,
0.15252662,
0.15167689,
0.15092826,
0.15170336,
0.15112782,
0.27685118,
0.18158865,
0.255126,
0.15158033,
0.21126032,
0.15210176,
0.15169191,
0.15131617,
0.15609884,
0.15483546,
0.27338123,
0.18406892,
0.24548411,
0.15210652,
0.21108794,
0.15108371,
0.15315914,
0.15159202,
0.15166831,
0.1512661,
0.28233504,
0.18357396,
0.2458725,
0.15187907,
0.20883393,
0.15201783,
0.15153217,
0.16271973,
0.15256858,
0.15110898,
0.28487349,
0.1805985,
0.25103331,
0.15117788,
0.2168498,
0.15116501,
0.15092468,
0.15183687,
0.15061498,
0.15118289,
0.28122663,
0.18164968,
0.23437095,
0.15083432,
0.21916223,
0.15102172,
0.15119004,
0.1518712,
0.15151262,
0.15095234,
0.27752686,
0.1809175,
0.25124693,
0.15063119,
0.21834826,
0.15113044,
0.15104556,
0.15354371,
0.15122652,
0.15244937,
0.27222872,
0.18408203,
0.2432785,
0.15141368,
0.21785283,
0.1524303,
0.1511507,
0.15109634,
0.15276551,
0.15146255,
0.28004694,
0.17940164,
0.2444489,
0.15130901,
0.21465993,
0.15557885,
0.15166283,
0.15258527,
0.15230632,
0.15139961,
0.2771616,
0.17948246,
0.24317789,
0.15401196,
0.216506,
0.15141082,
0.15150046,
0.15222645,
0.15634608,
0.15202212,
0.28024244,
0.1816895,
0.24594522,
0.15125155,
0.21732402,
0.15183449,
0.15172958,
0.15175176,
0.15202665,
0.15121317,
0.27476239,
0.18291736,
0.24987841,
0.15125704,
0.20960665,
0.15138626,
0.15252686,
0.1555233,
0.15131831,
0.15178275,
0.27050304,
0.17763543,
0.23819733,
0.15150595,
0.21603632,
0.15087819,
0.15079355,
0.15487337,
0.15133238,
0.15216923,
0.26993918,
0.18769717,
0.24265265,
0.15163851,
0.2101388,
0.15094233,
0.15157604,
0.15483093,
0.15185118,
0.15155983,
0.27424836,
0.18232298,
0.24571896,
0.38834643,
0.21389675,
0.15166497,
0.15214324,
0.15173435,
0.15260029,
0.15236068,
0.28081083,
0.18310452,
0.2534318,
0.15152407,
0.20345783,
0.15170169,
0.15196848,
0.15173674,
0.15177226,
0.15202451,
0.27415466,
0.18596244,
0.24382854,
0.1512866,
0.21073484,
0.15115094,
0.15743256,
0.15195489,
0.15218091,
0.15368652,
0.27371907,
0.18049145,
0.24297762,
0.15146804,
0.21175671,
0.15188217,
0.15226889,
0.1526382,
0.15172601,
0.15191698,
0.27197218,
0.18120813,
0.24836731,
0.15153933,
0.21131134,
0.15169716,
0.15233612,
0.15155864,
0.15163803,
0.15105987,
0.27272749,
0.17970967,
0.25169778,
0.15117884,
0.21937585,
0.15204144,
0.15360713,
0.15614724,
0.15280581,
0.15137792,
0.27477264,
0.18097162,
0.24454117,
0.15139294,
0.2136302,
0.15137339,
0.15393305,
0.15038466,
0.15599847,
0.1524694,
0.25901151,
0.18084955,
0.24290013,
0.15153575,
0.21412325,
0.15099192,
0.15122437,
0.1512928,
0.15183783,
0.15443921,
0.26033497,
0.18333149,
0.24179411,
0.15125799,
0.21388555,
0.15017724,
0.15079761,
0.1506989,
0.15059495,
0.15112972,
0.25789404,
0.18638873,
0.23979187,
0.15221715,
0.22553778,
0.15146613,
0.15202475,
0.15090346,
0.1517067,
0.15323043,
0.27741551,
0.18278193,
0.24133468,
0.1513319,
0.21539664,
0.1510818,
0.15219641,
0.15157008,
0.15176916,
0.15232301,
0.2679069,
0.1806252,
0.25459194,
0.15135932,
0.21057391,
0.154814,
0.1524179,
0.15145111,
0.15137815,
0.15177226,
0.26327848,
0.18185735,
0.25245214,
0.15102482,
0.21358204,
0.15106606,
0.15183997,
0.15110278,
0.15154743,
0.15196586,
0.27453279,
0.18155241,
0.23915434,
0.15191293,
0.21197867,
0.15130186,
0.1514709,
0.15158129,
0.15107536,
0.15132809,
0.27201152,
0.18539214,
0.24967122,
0.15087104,
0.2136848,
0.15103579,
0.15161872,
0.15129352,
0.15034366,
0.15166783,
0.27110934,
0.17980909,
0.24529719,
0.15109539,
0.21156764,
0.15158463,
0.15083289,
0.15109372,
0.15087509,
0.15174174,
0.27720404,
0.18311,
0.23632789,
0.15131545,
0.21322799,
0.15115571,
0.15183043,
0.15112925,
0.15126991,
0.1511066,
0.27183533,
0.18037391,
0.23927259,
0.15071797,
0.21249485,
0.15175343,
0.15086174,
0.15168548,
0.15132427,
0.15142345,
0.27188373,
0.18182278,
0.25230718,
0.15125322,
0.2148273,
0.15132666,
0.16211724,
0.15701318,
0.1513865,
0.15691566,
0.26292276,
0.18278098,
0.24541521,
0.15128112,
0.21521091,
0.1512444,
0.15128469,
0.15067697,
0.15055132,
0.15177035,
0.27493215,
0.18144178,
0.2435379,
0.15032315,
0.21202159,
0.15055704,
0.15074873,
0.15045428,
0.15077996,
0.15072513,
0.28151894,
0.18270254,
0.24530745,
0.14996052,
0.2136085,
0.14999819,
0.15033722,
0.15060425,
0.15023375,
0.15216351,
0.27620125,
0.18192244,
0.25257564,
0.15022612,
0.20555592,
0.14922857,
0.15030766,
0.14935827,
0.14980483,
0.15017319,
0.27667689,
0.18184829,
0.24332285,
0.14951706,
0.20915508,
0.14967513,
0.15036774,
0.1489718,
0.14806247,
0.14812922,
0.26062417,
0.18043375,
0.21838474,
0.14785647,
0.18547034,
0.14820027,
0.14765334,
0.14797473,
0.14769721,
0.14817953,
0.17489719,
0.1576407,
0.16518283,
0.14774561,
0.15542912,
0.14802074,
0.09935832,
]
),
"_count_history": array(
[
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
]
),
},
},
"val/coco-wholebody/AP": {
"type": "HistoryBuffer",
"repr": "<mmengine.logging.history_buffer.HistoryBuffer object at 0x7329099cb1c0>",
"dict": {
"max_length": 1000000,
"_log_history": array([0.66521864, 0.66545075]),
"_count_history": array([1, 1]),
},
},
"val/coco-wholebody/AP ": {
"5": {
"type": "HistoryBuffer",
"repr": "<mmengine.logging.history_buffer.HistoryBuffer object at 0x7329099cb2b0>",
"dict": {
"max_length": 1000000,
"_log_history": array([0.87611426, 0.87716453]),
"_count_history": array([1, 1]),
},
},
"75": {
"type": "HistoryBuffer",
"repr": "<mmengine.logging.history_buffer.HistoryBuffer object at 0x7329099cb3a0>",
"dict": {
"max_length": 1000000,
"_log_history": array([0.73454072, 0.73420365]),
"_count_history": array([1, 1]),
},
},
},
"val/coco-wholebody/AP (M)": {
"type": "HistoryBuffer",
"repr": "<mmengine.logging.history_buffer.HistoryBuffer object at 0x7329099cb490>",
"dict": {
"max_length": 1000000,
"_log_history": array([0.63646269, 0.63586262]),
"_count_history": array([1, 1]),
},
},
"val/coco-wholebody/AP (L)": {
"type": "HistoryBuffer",
"repr": "<mmengine.logging.history_buffer.HistoryBuffer object at 0x7329099cb580>",
"dict": {
"max_length": 1000000,
"_log_history": array([0.7229412, 0.72406496]),
"_count_history": array([1, 1]),
},
},
"val/coco-wholebody/AR": {
"type": "HistoryBuffer",
"repr": "<mmengine.logging.history_buffer.HistoryBuffer object at 0x7329099cb670>",
"dict": {
"max_length": 1000000,
"_log_history": array([0.74198678, 0.74269521]),
"_count_history": array([1, 1]),
},
},
"val/coco-wholebody/AR ": {
"5": {
"type": "HistoryBuffer",
"repr": "<mmengine.logging.history_buffer.HistoryBuffer object at 0x7329099cb760>",
"dict": {
"max_length": 1000000,
"_log_history": array([0.92096977, 0.92191436]),
"_count_history": array([1, 1]),
},
},
"75": {
"type": "HistoryBuffer",
"repr": "<mmengine.logging.history_buffer.HistoryBuffer object at 0x7329099cb850>",
"dict": {
"max_length": 1000000,
"_log_history": array([0.80462846, 0.80494332]),
"_count_history": array([1, 1]),
},
},
},
"val/coco-wholebody/AR (M)": {
"type": "HistoryBuffer",
"repr": "<mmengine.logging.history_buffer.HistoryBuffer object at 0x7329099cb940>",
"dict": {
"max_length": 1000000,
"_log_history": array([0.70849495, 0.70854958]),
"_count_history": array([1, 1]),
},
},
"val/coco-wholebody/AR (L)": {
"type": "HistoryBuffer",
"repr": "<mmengine.logging.history_buffer.HistoryBuffer object at 0x7329099cba30>",
"dict": {
"max_length": 1000000,
"_log_history": array([0.78978075, 0.79137867]),
"_count_history": array([1, 1]),
},
},
},
"runtime_info": {
"cfg": "default_scope = 'mmpose'\ndefault_hooks = dict(\n timer=dict(type='IterTimerHook'),\n logger=dict(type='LoggerHook', interval=50),\n param_scheduler=dict(type='ParamSchedulerHook'),\n checkpoint=dict(\n type='CheckpointHook',\n interval=10,\n save_best='coco-wholebody/AP',\n rule='greater',\n max_keep_ckpts=1),\n sampler_seed=dict(type='DistSamplerSeedHook'),\n visualization=dict(type='PoseVisualizationHook', enable=False))\ncustom_hooks = [\n dict(\n type='EMAHook',\n ema_type='ExpMomentumEMA',\n momentum=0.0002,\n update_buffers=True,\n priority=49),\n dict(\n type='mmdet.PipelineSwitchHook',\n switch_epoch=240,\n switch_pipeline=[\n dict(type='LoadImage', backend_args=dict(backend='local')),\n dict(type='GetBBoxCenterScale'),\n dict(type='RandomFlip', direction='horizontal'),\n dict(type='RandomHalfBody'),\n dict(\n type='RandomBBoxTransform',\n shift_factor=0.0,\n scale_factor=[0.75, 1.25],\n rotate_factor=60),\n dict(type='TopdownAffine', input_size=(288, 384)),\n dict(type='mmdet.YOLOXHSVRandomAug'),\n dict(\n type='Albumentation',\n transforms=[\n dict(type='Blur', p=0.1),\n dict(type='MedianBlur', p=0.1),\n dict(\n type='CoarseDropout',\n max_holes=1,\n max_height=0.4,\n max_width=0.4,\n min_holes=1,\n min_height=0.2,\n min_width=0.2,\n p=0.5)\n ]),\n dict(\n type='GenerateTarget',\n encoder=dict(\n type='SimCCLabel',\n input_size=(288, 384),\n sigma=(6.0, 6.93),\n simcc_split_ratio=2.0,\n normalize=False,\n use_dark=False)),\n dict(type='PackPoseInputs')\n ])\n]\nenv_cfg = dict(\n cudnn_benchmark=False,\n mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),\n dist_cfg=dict(backend='nccl'))\nvis_backends = [dict(type='LocalVisBackend')]\nvisualizer = dict(\n type='PoseLocalVisualizer',\n vis_backends=[dict(type='LocalVisBackend')],\n name='visualizer')\nlog_processor = dict(\n type='LogProcessor', window_size=50, by_epoch=True, num_digits=6)\nlog_level = 'INFO'\nload_from = None\nresume = False\nbackend_args = dict(backend='local')\ntrain_cfg = dict(by_epoch=True, max_epochs=60, val_interval=10)\nval_cfg = dict()\ntest_cfg = dict()\nmax_epochs = 270\nstage2_num_epochs = 30\nbase_lr = 0.004\nrandomness = dict(seed=21)\noptim_wrapper = dict(\n type='OptimWrapper',\n optimizer=dict(type='AdamW', lr=0.004, weight_decay=0.05),\n paramwise_cfg=dict(\n norm_decay_mult=0, bias_decay_mult=0, bypass_duplicate=True),\n clip_grad=dict(max_norm=1.0, norm_type=2))\nparam_scheduler = [\n dict(\n type='LinearLR', start_factor=1e-05, by_epoch=False, begin=0,\n end=1000),\n dict(\n type='CosineAnnealingLR',\n eta_min=0.0002,\n begin=135,\n end=270,\n T_max=135,\n by_epoch=True,\n convert_to_iter_based=True)\n]\nauto_scale_lr = dict(base_batch_size=512)\ncodec = dict(\n type='SimCCLabel',\n input_size=(288, 384),\n sigma=(6.0, 6.93),\n simcc_split_ratio=2.0,\n normalize=False,\n use_dark=False)\nmodel = dict(\n type='PoseEstimatorDistiller',\n two_dis=True,\n teacher_pretrained=\n '/home/yangzhendong/Projects/mmpose/work_dirs/rtmpose_x_dis_l__coco-ubody-384x288/rtm-l_66.4.pth',\n teacher_cfg=\n 'configs/wholebody_2d_keypoint/rtmpose/ubody/rtmpose-l_8xb32-270e_coco-ubody-wholebody-384x288.py',\n student_cfg=\n 'configs/wholebody_2d_keypoint/rtmpose/ubody/rtmpose-l_8xb32-270e_coco-ubody-wholebody-384x288.py',\n distill_cfg=[\n dict(methods=[\n dict(\n type='MGD_2Loss',\n name='loss_mgd',\n use_this=True,\n student_channels=1024,\n teacher_channels=1024,\n alpha_mgd=7e-05,\n lambda_mgd=0.15)\n ]),\n dict(methods=[\n dict(type='NKDLoss', name='loss_nkd', use_this=True, weight=1)\n ])\n ],\n data_preprocessor=dict(\n type='PoseDataPreprocessor',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n bgr_to_rgb=True),\n train_cfg=dict(max_epochs=60, val_interval=10))\ndataset_type = 'CocoWholeBodyDataset'\ndata_mode = 'topdown'\ndata_root = '/data/'\ntrain_pipeline = [\n dict(type='LoadImage', backend_args=dict(backend='local')),\n dict(type='GetBBoxCenterScale'),\n dict(type='RandomFlip', direction='horizontal'),\n dict(type='RandomHalfBody'),\n dict(\n type='RandomBBoxTransform', scale_factor=[0.6, 1.4], rotate_factor=80),\n dict(type='TopdownAffine', input_size=(288, 384)),\n dict(type='mmdet.YOLOXHSVRandomAug'),\n dict(\n type='Albumentation',\n transforms=[\n dict(type='Blur', p=0.1),\n dict(type='MedianBlur', p=0.1),\n dict(\n type='CoarseDropout',\n max_holes=1,\n max_height=0.4,\n max_width=0.4,\n min_holes=1,\n min_height=0.2,\n min_width=0.2,\n p=1.0)\n ]),\n dict(\n type='GenerateTarget',\n encoder=dict(\n type='SimCCLabel',\n input_size=(288, 384),\n sigma=(6.0, 6.93),\n simcc_split_ratio=2.0,\n normalize=False,\n use_dark=False)),\n dict(type='PackPoseInputs')\n]\nval_pipeline = [\n dict(type='LoadImage', backend_args=dict(backend='local')),\n dict(type='GetBBoxCenterScale'),\n dict(type='TopdownAffine', input_size=(288, 384)),\n dict(type='PackPoseInputs')\n]\ntrain_pipeline_stage2 = [\n dict(type='LoadImage', backend_args=dict(backend='local')),\n dict(type='GetBBoxCenterScale'),\n dict(type='RandomFlip', direction='horizontal'),\n dict(type='RandomHalfBody'),\n dict(\n type='RandomBBoxTransform',\n shift_factor=0.0,\n scale_factor=[0.75, 1.25],\n rotate_factor=60),\n dict(type='TopdownAffine', input_size=(288, 384)),\n dict(type='mmdet.YOLOXHSVRandomAug'),\n dict(\n type='Albumentation',\n transforms=[\n dict(type='Blur', p=0.1),\n dict(type='MedianBlur', p=0.1),\n dict(\n type='CoarseDropout',\n max_holes=1,\n max_height=0.4,\n max_width=0.4,\n min_holes=1,\n min_height=0.2,\n min_width=0.2,\n p=0.5)\n ]),\n dict(\n type='GenerateTarget',\n encoder=dict(\n type='SimCCLabel',\n input_size=(288, 384),\n sigma=(6.0, 6.93),\n simcc_split_ratio=2.0,\n normalize=False,\n use_dark=False)),\n dict(type='PackPoseInputs')\n]\ndatasets = [\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='coco/annotations/coco_wholebody_train_v1.0.json',\n data_prefix=dict(img='coco/train2017/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Magic_show/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Magic_show/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Entertainment/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Entertainment/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/ConductMusic/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/ConductMusic/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Online_class/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Online_class/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/TalkShow/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/TalkShow/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Speech/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Speech/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Fitness/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Fitness/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Interview/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Interview/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Olympic/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Olympic/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/TVShow/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/TVShow/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Singing/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Singing/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/SignLanguage/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/SignLanguage/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Movie/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Movie/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/LiveVlog/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/LiveVlog/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/VideoConference/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/VideoConference/'),\n pipeline=[])\n]\ndataset_coco = dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='coco/annotations/coco_wholebody_train_v1.0.json',\n data_prefix=dict(img='coco/train2017/'),\n pipeline=[])\nscene = [\n 'Magic_show', 'Entertainment', 'ConductMusic', 'Online_class', 'TalkShow',\n 'Speech', 'Fitness', 'Interview', 'Olympic', 'TVShow', 'Singing',\n 'SignLanguage', 'Movie', 'LiveVlog', 'VideoConference'\n]\ni = 14\ntrain_dataloader = dict(\n batch_size=32,\n num_workers=10,\n persistent_workers=True,\n sampler=dict(type='DefaultSampler', shuffle=True),\n dataset=dict(\n type='CombinedDataset',\n metainfo=dict(from_file='configs/_base_/datasets/coco_wholebody.py'),\n datasets=[\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='coco/annotations/coco_wholebody_train_v1.0.json',\n data_prefix=dict(img='coco/train2017/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file=\n 'UBody/annotations/Magic_show/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Magic_show/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file=\n 'UBody/annotations/Entertainment/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Entertainment/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file=\n 'UBody/annotations/ConductMusic/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/ConductMusic/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file=\n 'UBody/annotations/Online_class/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Online_class/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/TalkShow/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/TalkShow/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Speech/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Speech/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Fitness/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Fitness/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Interview/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Interview/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Olympic/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Olympic/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/TVShow/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/TVShow/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Singing/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Singing/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file=\n 'UBody/annotations/SignLanguage/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/SignLanguage/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Movie/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Movie/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/LiveVlog/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/LiveVlog/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file=\n 'UBody/annotations/VideoConference/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/VideoConference/'),\n pipeline=[])\n ],\n pipeline=[\n dict(type='LoadImage', backend_args=dict(backend='local')),\n dict(type='GetBBoxCenterScale'),\n dict(type='RandomFlip', direction='horizontal'),\n dict(type='RandomHalfBody'),\n dict(\n type='RandomBBoxTransform',\n scale_factor=[0.6, 1.4],\n rotate_factor=80),\n dict(type='TopdownAffine', input_size=(288, 384)),\n dict(type='mmdet.YOLOXHSVRandomAug'),\n dict(\n type='Albumentation',\n transforms=[\n dict(type='Blur', p=0.1),\n dict(type='MedianBlur', p=0.1),\n dict(\n type='CoarseDropout',\n max_holes=1,\n max_height=0.4,\n max_width=0.4,\n min_holes=1,\n min_height=0.2,\n min_width=0.2,\n p=1.0)\n ]),\n dict(\n type='GenerateTarget',\n encoder=dict(\n type='SimCCLabel',\n input_size=(288, 384),\n sigma=(6.0, 6.93),\n simcc_split_ratio=2.0,\n normalize=False,\n use_dark=False)),\n dict(type='PackPoseInputs')\n ],\n test_mode=False))\nval_dataloader = dict(\n batch_size=32,\n num_workers=10,\n persistent_workers=True,\n drop_last=False,\n sampler=dict(type='DefaultSampler', shuffle=False, round_up=False),\n dataset=dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='coco/annotations/coco_wholebody_val_v1.0.json',\n bbox_file=\n '/data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json',\n data_prefix=dict(img='coco/val2017/'),\n test_mode=True,\n pipeline=[\n dict(type='LoadImage', backend_args=dict(backend='local')),\n dict(type='GetBBoxCenterScale'),\n dict(type='TopdownAffine', input_size=(288, 384)),\n dict(type='PackPoseInputs')\n ]))\ntest_dataloader = dict(\n batch_size=32,\n num_workers=10,\n persistent_workers=True,\n drop_last=False,\n sampler=dict(type='DefaultSampler', shuffle=False, round_up=False),\n dataset=dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='coco/annotations/coco_wholebody_val_v1.0.json',\n bbox_file=\n '/data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json',\n data_prefix=dict(img='coco/val2017/'),\n test_mode=True,\n pipeline=[\n dict(type='LoadImage', backend_args=dict(backend='local')),\n dict(type='GetBBoxCenterScale'),\n dict(type='TopdownAffine', input_size=(288, 384)),\n dict(type='PackPoseInputs')\n ]))\nval_evaluator = dict(\n type='CocoWholeBodyMetric',\n ann_file='/data/coco/annotations/coco_wholebody_val_v1.0.json')\ntest_evaluator = dict(\n type='CocoWholeBodyMetric',\n ann_file='/data/coco/annotations/coco_wholebody_val_v1.0.json')\nfind_unused_parameters = True\nmgd = True\nnkd = True\nlauncher = 'pytorch'\nwork_dir = './work_dirs/rtmpose_l-ll__coco-ubody-384x288'\n",
"seed": 21,
"experiment_name": "rtmpose_l-ll__coco-ubody-384x288_20230706_095637",
"mmengine_version": "0.7.2",
"epoch": 19,
"iter": 19139,
"max_epochs": 60,
"max_iters": 57420,
"eta": {"type": "float64", "repr": "0.0", "dict": {}},
"last_ckpt": "/home/yangzhendong/Projects/mmpose/work_dirs/rtmpose_l-ll__coco-ubody-384x288/epoch_20.pth",
"best_score": {"type": "float64", "repr": "0.665450746403108", "dict": {}},
"best_ckpt": "/home/yangzhendong/Projects/mmpose/work_dirs/rtmpose_l-ll__coco-ubody-384x288/best_coco-wholebody_AP_epoch_20.pth",
"dataset_meta": {
"dataset_name": "coco_wholebody",
"num_keypoints": 133,
"keypoint_colors": {
"type": "ndarray",
"repr": "array([[ 51, 153, 255],\n [ 51, 153, 255],\n [ 51, 153, 255],\n [ 51, 153, 255],\n [ 51, 153, 255],\n [ 0, 255, 0],\n [255, 128, 0],\n [ 0, 255, 0],\n [255, 128, 0],\n [ 0, 255, 0],\n [255, 128, 0],\n [ 0, 255, 0],\n [255, 128, 0],\n [ 0, 255, 0],\n [255, 128, 0],\n [ 0, 255, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 153, 255],\n [255, 153, 255],\n [255, 153, 255],\n [255, 153, 255],\n [102, 178, 255],\n [102, 178, 255],\n [102, 178, 255],\n [102, 178, 255],\n [255, 51, 51],\n [255, 51, 51],\n [255, 51, 51],\n [255, 51, 51],\n [ 0, 255, 0],\n [ 0, 255, 0],\n [ 0, 255, 0],\n [ 0, 255, 0],\n [255, 255, 255],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 153, 255],\n [255, 153, 255],\n [255, 153, 255],\n [255, 153, 255],\n [102, 178, 255],\n [102, 178, 255],\n [102, 178, 255],\n [102, 178, 255],\n [255, 51, 51],\n [255, 51, 51],\n [255, 51, 51],\n [255, 51, 51],\n [ 0, 255, 0],\n [ 0, 255, 0],\n [ 0, 255, 0],\n [ 0, 255, 0]], dtype=uint8)",
"dict": {},
},
"num_skeleton_links": 65,
"skeleton_link_colors": {
"type": "ndarray",
"repr": "array([[ 0, 255, 0],\n [ 0, 255, 0],\n [255, 128, 0],\n [255, 128, 0],\n [ 51, 153, 255],\n [ 51, 153, 255],\n [ 51, 153, 255],\n [ 51, 153, 255],\n [ 0, 255, 0],\n [255, 128, 0],\n [ 0, 255, 0],\n [255, 128, 0],\n [ 51, 153, 255],\n [ 51, 153, 255],\n [ 51, 153, 255],\n [ 51, 153, 255],\n [ 51, 153, 255],\n [ 51, 153, 255],\n [ 51, 153, 255],\n [ 0, 255, 0],\n [ 0, 255, 0],\n [ 0, 255, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 153, 255],\n [255, 153, 255],\n [255, 153, 255],\n [255, 153, 255],\n [102, 178, 255],\n [102, 178, 255],\n [102, 178, 255],\n [102, 178, 255],\n [255, 51, 51],\n [255, 51, 51],\n [255, 51, 51],\n [255, 51, 51],\n [ 0, 255, 0],\n [ 0, 255, 0],\n [ 0, 255, 0],\n [ 0, 255, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 153, 255],\n [255, 153, 255],\n [255, 153, 255],\n [255, 153, 255],\n [102, 178, 255],\n [102, 178, 255],\n [102, 178, 255],\n [102, 178, 255],\n [255, 51, 51],\n [255, 51, 51],\n [255, 51, 51],\n [255, 51, 51],\n [ 0, 255, 0],\n [ 0, 255, 0],\n [ 0, 255, 0],\n [ 0, 255, 0]], dtype=uint8)",
"dict": {},
},
"dataset_keypoint_weights": {
"type": "ndarray",
"repr": "array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,\n 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,\n 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,\n 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,\n 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,\n 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,\n 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,\n 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],\n dtype=float32)",
"dict": {},
},
"sigmas": {
"type": "ndarray",
"repr": "array([0.026, 0.025, 0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072,\n 0.062, 0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089, 0.068,\n 0.066, 0.066, 0.092, 0.094, 0.094, 0.042, 0.043, 0.044, 0.043,\n 0.04 , 0.035, 0.031, 0.025, 0.02 , 0.023, 0.029, 0.032, 0.037,\n 0.038, 0.043, 0.041, 0.045, 0.013, 0.012, 0.011, 0.011, 0.012,\n 0.012, 0.011, 0.011, 0.013, 0.015, 0.009, 0.007, 0.007, 0.007,\n 0.012, 0.009, 0.008, 0.016, 0.01 , 0.017, 0.011, 0.009, 0.011,\n 0.009, 0.007, 0.013, 0.008, 0.011, 0.012, 0.01 , 0.034, 0.008,\n 0.008, 0.009, 0.008, 0.008, 0.007, 0.01 , 0.008, 0.009, 0.009,\n 0.009, 0.007, 0.007, 0.008, 0.011, 0.008, 0.008, 0.008, 0.01 ,\n 0.008, 0.029, 0.022, 0.035, 0.037, 0.047, 0.026, 0.025, 0.024,\n 0.035, 0.018, 0.024, 0.022, 0.026, 0.017, 0.021, 0.021, 0.032,\n 0.02 , 0.019, 0.022, 0.031, 0.029, 0.022, 0.035, 0.037, 0.047,\n 0.026, 0.025, 0.024, 0.035, 0.018, 0.024, 0.022, 0.026, 0.017,\n 0.021, 0.021, 0.032, 0.02 , 0.019, 0.022, 0.031], dtype=float32)",
"dict": {},
},
"keypoint_id2name": {
"0": "nose",
"1": "left_eye",
"2": "right_eye",
"3": "left_ear",
"4": "right_ear",
"5": "left_shoulder",
"6": "right_shoulder",
"7": "left_elbow",
"8": "right_elbow",
"9": "left_wrist",
"10": "right_wrist",
"11": "left_hip",
"12": "right_hip",
"13": "left_knee",
"14": "right_knee",
"15": "left_ankle",
"16": "right_ankle",
"17": "left_big_toe",
"18": "left_small_toe",
"19": "left_heel",
"20": "right_big_toe",
"21": "right_small_toe",
"22": "right_heel",
"23": "face-0",
"24": "face-1",
"25": "face-2",
"26": "face-3",
"27": "face-4",
"28": "face-5",
"29": "face-6",
"30": "face-7",
"31": "face-8",
"32": "face-9",
"33": "face-10",
"34": "face-11",
"35": "face-12",
"36": "face-13",
"37": "face-14",
"38": "face-15",
"39": "face-16",
"40": "face-17",
"41": "face-18",
"42": "face-19",
"43": "face-20",
"44": "face-21",
"45": "face-22",
"46": "face-23",
"47": "face-24",
"48": "face-25",
"49": "face-26",
"50": "face-27",
"51": "face-28",
"52": "face-29",
"53": "face-30",
"54": "face-31",
"55": "face-32",
"56": "face-33",
"57": "face-34",
"58": "face-35",
"59": "face-36",
"60": "face-37",
"61": "face-38",
"62": "face-39",
"63": "face-40",
"64": "face-41",
"65": "face-42",
"66": "face-43",
"67": "face-44",
"68": "face-45",
"69": "face-46",
"70": "face-47",
"71": "face-48",
"72": "face-49",
"73": "face-50",
"74": "face-51",
"75": "face-52",
"76": "face-53",
"77": "face-54",
"78": "face-55",
"79": "face-56",
"80": "face-57",
"81": "face-58",
"82": "face-59",
"83": "face-60",
"84": "face-61",
"85": "face-62",
"86": "face-63",
"87": "face-64",
"88": "face-65",
"89": "face-66",
"90": "face-67",
"91": "left_hand_root",
"92": "left_thumb1",
"93": "left_thumb2",
"94": "left_thumb3",
"95": "left_thumb4",
"96": "left_forefinger1",
"97": "left_forefinger2",
"98": "left_forefinger3",
"99": "left_forefinger4",
"100": "left_middle_finger1",
"101": "left_middle_finger2",
"102": "left_middle_finger3",
"103": "left_middle_finger4",
"104": "left_ring_finger1",
"105": "left_ring_finger2",
"106": "left_ring_finger3",
"107": "left_ring_finger4",
"108": "left_pinky_finger1",
"109": "left_pinky_finger2",
"110": "left_pinky_finger3",
"111": "left_pinky_finger4",
"112": "right_hand_root",
"113": "right_thumb1",
"114": "right_thumb2",
"115": "right_thumb3",
"116": "right_thumb4",
"117": "right_forefinger1",
"118": "right_forefinger2",
"119": "right_forefinger3",
"120": "right_forefinger4",
"121": "right_middle_finger1",
"122": "right_middle_finger2",
"123": "right_middle_finger3",
"124": "right_middle_finger4",
"125": "right_ring_finger1",
"126": "right_ring_finger2",
"127": "right_ring_finger3",
"128": "right_ring_finger4",
"129": "right_pinky_finger1",
"130": "right_pinky_finger2",
"131": "right_pinky_finger3",
"132": "right_pinky_finger4",
},
"keypoint_name2id": {
"nose": 0,
"left_eye": 1,
"right_eye": 2,
"left_ear": 3,
"right_ear": 4,
"left_shoulder": 5,
"right_shoulder": 6,
"left_elbow": 7,
"right_elbow": 8,
"left_wrist": 9,
"right_wrist": 10,
"left_hip": 11,
"right_hip": 12,
"left_knee": 13,
"right_knee": 14,
"left_ankle": 15,
"right_ankle": 16,
"left_big_toe": 17,
"left_small_toe": 18,
"left_heel": 19,
"right_big_toe": 20,
"right_small_toe": 21,
"right_heel": 22,
"face-0": 23,
"face-1": 24,
"face-2": 25,
"face-3": 26,
"face-4": 27,
"face-5": 28,
"face-6": 29,
"face-7": 30,
"face-8": 31,
"face-9": 32,
"face-10": 33,
"face-11": 34,
"face-12": 35,
"face-13": 36,
"face-14": 37,
"face-15": 38,
"face-16": 39,
"face-17": 40,
"face-18": 41,
"face-19": 42,
"face-20": 43,
"face-21": 44,
"face-22": 45,
"face-23": 46,
"face-24": 47,
"face-25": 48,
"face-26": 49,
"face-27": 50,
"face-28": 51,
"face-29": 52,
"face-30": 53,
"face-31": 54,
"face-32": 55,
"face-33": 56,
"face-34": 57,
"face-35": 58,
"face-36": 59,
"face-37": 60,
"face-38": 61,
"face-39": 62,
"face-40": 63,
"face-41": 64,
"face-42": 65,
"face-43": 66,
"face-44": 67,
"face-45": 68,
"face-46": 69,
"face-47": 70,
"face-48": 71,
"face-49": 72,
"face-50": 73,
"face-51": 74,
"face-52": 75,
"face-53": 76,
"face-54": 77,
"face-55": 78,
"face-56": 79,
"face-57": 80,
"face-58": 81,
"face-59": 82,
"face-60": 83,
"face-61": 84,
"face-62": 85,
"face-63": 86,
"face-64": 87,
"face-65": 88,
"face-66": 89,
"face-67": 90,
"left_hand_root": 91,
"left_thumb1": 92,
"left_thumb2": 93,
"left_thumb3": 94,
"left_thumb4": 95,
"left_forefinger1": 96,
"left_forefinger2": 97,
"left_forefinger3": 98,
"left_forefinger4": 99,
"left_middle_finger1": 100,
"left_middle_finger2": 101,
"left_middle_finger3": 102,
"left_middle_finger4": 103,
"left_ring_finger1": 104,
"left_ring_finger2": 105,
"left_ring_finger3": 106,
"left_ring_finger4": 107,
"left_pinky_finger1": 108,
"left_pinky_finger2": 109,
"left_pinky_finger3": 110,
"left_pinky_finger4": 111,
"right_hand_root": 112,
"right_thumb1": 113,
"right_thumb2": 114,
"right_thumb3": 115,
"right_thumb4": 116,
"right_forefinger1": 117,
"right_forefinger2": 118,
"right_forefinger3": 119,
"right_forefinger4": 120,
"right_middle_finger1": 121,
"right_middle_finger2": 122,
"right_middle_finger3": 123,
"right_middle_finger4": 124,
"right_ring_finger1": 125,
"right_ring_finger2": 126,
"right_ring_finger3": 127,
"right_ring_finger4": 128,
"right_pinky_finger1": 129,
"right_pinky_finger2": 130,
"right_pinky_finger3": 131,
"right_pinky_finger4": 132,
},
"upper_body_ids": {
"0": 0,
"1": 1,
"2": 2,
"3": 3,
"4": 4,
"5": 5,
"6": 6,
"7": 7,
"8": 8,
"9": 9,
"10": 10,
},
"lower_body_ids": {
"0": 11,
"1": 12,
"2": 13,
"3": 14,
"4": 15,
"5": 16,
"6": 17,
"7": 18,
"8": 19,
"9": 20,
"10": 21,
"11": 22,
},
"flip_indices": {
"0": 0,
"1": 2,
"2": 1,
"3": 4,
"4": 3,
"5": 6,
"6": 5,
"7": 8,
"8": 7,
"9": 10,
"10": 9,
"11": 12,
"12": 11,
"13": 14,
"14": 13,
"15": 16,
"16": 15,
"17": 20,
"18": 21,
"19": 22,
"20": 17,
"21": 18,
"22": 19,
"23": 39,
"24": 38,
"25": 37,
"26": 36,
"27": 35,
"28": 34,
"29": 33,
"30": 32,
"31": 31,
"32": 30,
"33": 29,
"34": 28,
"35": 27,
"36": 26,
"37": 25,
"38": 24,
"39": 23,
"40": 49,
"41": 48,
"42": 47,
"43": 46,
"44": 45,
"45": 44,
"46": 43,
"47": 42,
"48": 41,
"49": 40,
"50": 50,
"51": 51,
"52": 52,
"53": 53,
"54": 58,
"55": 57,
"56": 56,
"57": 55,
"58": 54,
"59": 68,
"60": 67,
"61": 66,
"62": 65,
"63": 70,
"64": 69,
"65": 62,
"66": 61,
"67": 60,
"68": 59,
"69": 64,
"70": 63,
"71": 77,
"72": 76,
"73": 75,
"74": 74,
"75": 73,
"76": 72,
"77": 71,
"78": 82,
"79": 81,
"80": 80,
"81": 79,
"82": 78,
"83": 87,
"84": 86,
"85": 85,
"86": 84,
"87": 83,
"88": 90,
"89": 89,
"90": 88,
"91": 112,
"92": 113,
"93": 114,
"94": 115,
"95": 116,
"96": 117,
"97": 118,
"98": 119,
"99": 120,
"100": 121,
"101": 122,
"102": 123,
"103": 124,
"104": 125,
"105": 126,
"106": 127,
"107": 128,
"108": 129,
"109": 130,
"110": 131,
"111": 132,
"112": 91,
"113": 92,
"114": 93,
"115": 94,
"116": 95,
"117": 96,
"118": 97,
"119": 98,
"120": 99,
"121": 100,
"122": 101,
"123": 102,
"124": 103,
"125": 104,
"126": 105,
"127": 106,
"128": 107,
"129": 108,
"130": 109,
"131": 110,
"132": 111,
},
"flip_pairs": {
"0": (2, 1),
"1": (1, 2),
"2": (4, 3),
"3": (3, 4),
"4": (6, 5),
"5": (5, 6),
"6": (8, 7),
"7": (7, 8),
"8": (10, 9),
"9": (9, 10),
"10": (12, 11),
"11": (11, 12),
"12": (14, 13),
"13": (13, 14),
"14": (16, 15),
"15": (15, 16),
"16": (20, 17),
"17": (21, 18),
"18": (22, 19),
"19": (17, 20),
"20": (18, 21),
"21": (19, 22),
"22": (39, 23),
"23": (38, 24),
"24": (37, 25),
"25": (36, 26),
"26": (35, 27),
"27": (34, 28),
"28": (33, 29),
"29": (32, 30),
"30": (30, 32),
"31": (29, 33),
"32": (28, 34),
"33": (27, 35),
"34": (26, 36),
"35": (25, 37),
"36": (24, 38),
"37": (23, 39),
"38": (49, 40),
"39": (48, 41),
"40": (47, 42),
"41": (46, 43),
"42": (45, 44),
"43": (44, 45),
"44": (43, 46),
"45": (42, 47),
"46": (41, 48),
"47": (40, 49),
"48": (58, 54),
"49": (57, 55),
"50": (55, 57),
"51": (54, 58),
"52": (68, 59),
"53": (67, 60),
"54": (66, 61),
"55": (65, 62),
"56": (70, 63),
"57": (69, 64),
"58": (62, 65),
"59": (61, 66),
"60": (60, 67),
"61": (59, 68),
"62": (64, 69),
"63": (63, 70),
"64": (77, 71),
"65": (76, 72),
"66": (75, 73),
"67": (73, 75),
"68": (72, 76),
"69": (71, 77),
"70": (82, 78),
"71": (81, 79),
"72": (79, 81),
"73": (78, 82),
"74": (87, 83),
"75": (86, 84),
"76": (84, 86),
"77": (83, 87),
"78": (90, 88),
"79": (88, 90),
"80": (112, 91),
"81": (113, 92),
"82": (114, 93),
"83": (115, 94),
"84": (116, 95),
"85": (117, 96),
"86": (118, 97),
"87": (119, 98),
"88": (120, 99),
"89": (121, 100),
"90": (122, 101),
"91": (123, 102),
"92": (124, 103),
"93": (125, 104),
"94": (126, 105),
"95": (127, 106),
"96": (128, 107),
"97": (129, 108),
"98": (130, 109),
"99": (131, 110),
"100": (132, 111),
"101": (91, 112),
"102": (92, 113),
"103": (93, 114),
"104": (94, 115),
"105": (95, 116),
"106": (96, 117),
"107": (97, 118),
"108": (98, 119),
"109": (99, 120),
"110": (100, 121),
"111": (101, 122),
"112": (102, 123),
"113": (103, 124),
"114": (104, 125),
"115": (105, 126),
"116": (106, 127),
"117": (107, 128),
"118": (108, 129),
"119": (109, 130),
"120": (110, 131),
"121": (111, 132),
},
"skeleton_links": {
"0": (15, 13),
"1": (13, 11),
"2": (16, 14),
"3": (14, 12),
"4": (11, 12),
"5": (5, 11),
"6": (6, 12),
"7": (5, 6),
"8": (5, 7),
"9": (6, 8),
"10": (7, 9),
"11": (8, 10),
"12": (1, 2),
"13": (0, 1),
"14": (0, 2),
"15": (1, 3),
"16": (2, 4),
"17": (3, 5),
"18": (4, 6),
"19": (15, 17),
"20": (15, 18),
"21": (15, 19),
"22": (16, 20),
"23": (16, 21),
"24": (16, 22),
"25": (91, 92),
"26": (92, 93),
"27": (93, 94),
"28": (94, 95),
"29": (91, 96),
"30": (96, 97),
"31": (97, 98),
"32": (98, 99),
"33": (91, 100),
"34": (100, 101),
"35": (101, 102),
"36": (102, 103),
"37": (91, 104),
"38": (104, 105),
"39": (105, 106),
"40": (106, 107),
"41": (91, 108),
"42": (108, 109),
"43": (109, 110),
"44": (110, 111),
"45": (112, 113),
"46": (113, 114),
"47": (114, 115),
"48": (115, 116),
"49": (112, 117),
"50": (117, 118),
"51": (118, 119),
"52": (119, 120),
"53": (112, 121),
"54": (121, 122),
"55": (122, 123),
"56": (123, 124),
"57": (112, 125),
"58": (125, 126),
"59": (126, 127),
"60": (127, 128),
"61": (112, 129),
"62": (129, 130),
"63": (130, 131),
"64": (131, 132),
},
},
},
"resumed_keys": {
"cfg": True,
"seed": True,
"experiment_name": True,
"mmengine_version": True,
"epoch": True,
"iter": True,
"max_epochs": True,
"max_iters": True,
"dataset_meta": True,
"train/lr": True,
"train/data_time": True,
"train/grad_norm": True,
"train/loss": True,
"train/loss_mgd": True,
"train/loss_nkd": True,
"train/time": True,
"eta": True,
"last_ckpt": True,
"val/data_time": True,
"val/time": True,
"val/coco-wholebody/AP": True,
"val/coco-wholebody/AP ": {"5": True, "75": True},
"val/coco-wholebody/AP (M)": True,
"val/coco-wholebody/AP (L)": True,
"val/coco-wholebody/AR": True,
"val/coco-wholebody/AR ": {"5": True, "75": True},
"val/coco-wholebody/AR (M)": True,
"val/coco-wholebody/AR (L)": True,
"best_score": True,
"best_ckpt": True,
},
},
}