return { "meta": { "env_info": "sys.platform: linux\nPython: 3.8.12 (default, Oct 12 2021, 13:49:34) [GCC 7.5.0]\nCUDA available: True\nGPU 0,1,2,3,4,5,6,7: Tesla PG503-216\nCUDA_HOME: /mnt/lustre/share/cuda-10.2\nNVCC: Cuda compilation tools, release 10.2, V10.2.89\nGCC: gcc (GCC) 5.4.0\nPyTorch: 1.8.0\nPyTorch compiling details: PyTorch built with:\n - GCC 7.3\n - C++ Version: 201402\n - Intel(R) oneAPI Math Kernel Library Version 2021.3-Product Build 20210617 for Intel(R) 64 architecture applications\n - Intel(R) MKL-DNN v1.7.0 (Git Hash 7aed236906b1f7a05c0917e5257a1af05e9ff683)\n - OpenMP 201511 (a.k.a. OpenMP 4.5)\n - NNPACK is enabled\n - CPU capability usage: AVX2\n - CUDA Runtime 11.1\n - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37\n - CuDNN 8.0.5\n - Magma 2.5.2\n - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.1, CUDNN_VERSION=8.0.5, CXX_COMPILER=/opt/rh/devtoolset-7/root/usr/bin/c++, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.8.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, \n\nTorchVision: 0.9.0\nOpenCV: 4.5.4-dev\nMMCV: 1.3.18\nMMCV Compiler: GCC 7.3\nMMCV CUDA Compiler: 11.1\nMMDetection: 2.18.1+d9697f3", "config": "optimizer = dict(\n type='SGD',\n lr=0.01,\n momentum=0.9,\n weight_decay=0.0005,\n nesterov=True,\n paramwise_cfg=dict(norm_decay_mult=0.0, bias_decay_mult=0.0))\noptimizer_config = dict(grad_clip=None)\nlr_config = dict(\n policy='YOLOX',\n warmup='exp',\n by_epoch=False,\n warmup_by_epoch=True,\n warmup_ratio=1,\n warmup_iters=5,\n num_last_epochs=15,\n min_lr_ratio=0.05)\nrunner = dict(type='EpochBasedRunner', max_epochs=300)\ncheckpoint_config = dict(interval=10)\nlog_config = dict(interval=50, hooks=[dict(type='TextLoggerHook')])\ncustom_hooks = [\n dict(type='YOLOXModeSwitchHook', num_last_epochs=15, priority=48),\n dict(type='SyncNormHook', num_last_epochs=15, interval=10, priority=48),\n dict(\n type='ExpMomentumEMAHook',\n resume_from=None,\n momentum=0.0001,\n priority=49)\n]\ndist_params = dict(backend='nccl')\nlog_level = 'INFO'\nload_from = None\nresume_from = None\nworkflow = [('train', 1)]\nimg_scale = (640, 640)\nmodel = dict(\n type='YOLOX',\n input_size=(640, 640),\n random_size_range=(15, 25),\n random_size_interval=10,\n backbone=dict(type='CSPDarknet', deepen_factor=1.0, widen_factor=1.0),\n neck=dict(\n type='YOLOXPAFPN',\n in_channels=[256, 512, 1024],\n out_channels=256,\n num_csp_blocks=3),\n bbox_head=dict(\n type='YOLOXHead', num_classes=80, in_channels=256, feat_channels=256),\n train_cfg=dict(assigner=dict(type='SimOTAAssigner', center_radius=2.5)),\n test_cfg=dict(score_thr=0.01, nms=dict(type='nms', iou_threshold=0.65)))\ndata_root = 'data/coco/'\ndataset_type = 'CocoDataset'\ntrain_pipeline = [\n dict(type='Mosaic', img_scale=(640, 640), pad_val=114.0),\n dict(\n type='RandomAffine', scaling_ratio_range=(0.1, 2),\n border=(-320, -320)),\n dict(\n type='MixUp',\n img_scale=(640, 640),\n ratio_range=(0.8, 1.6),\n pad_val=114.0),\n dict(type='YOLOXHSVRandomAug'),\n dict(type='RandomFlip', flip_ratio=0.5),\n dict(type='Resize', img_scale=(640, 640), keep_ratio=True),\n dict(\n type='Pad',\n pad_to_square=True,\n pad_val=dict(img=(114.0, 114.0, 114.0))),\n dict(type='FilterAnnotations', min_gt_bbox_wh=(1, 1), keep_empty=False),\n dict(type='DefaultFormatBundle'),\n dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])\n]\ntrain_dataset = dict(\n type='MultiImageMixDataset',\n dataset=dict(\n type='CocoDataset',\n ann_file='data/coco/annotations/instances_train2017.json',\n img_prefix='data/coco/train2017/',\n pipeline=[\n dict(\n type='LoadImageFromFile',\n file_client_args=dict(\n backend='petrel',\n path_mapping=dict({\n '.data/coco/':\n 's3://openmmlab/datasets/detection/coco/',\n 'data/coco/':\n 's3://openmmlab/datasets/detection/coco/'\n }))),\n dict(type='LoadAnnotations', with_bbox=True)\n ],\n filter_empty_gt=False),\n pipeline=[\n dict(type='Mosaic', img_scale=(640, 640), pad_val=114.0),\n dict(\n type='RandomAffine',\n scaling_ratio_range=(0.1, 2),\n border=(-320, -320)),\n dict(\n type='MixUp',\n img_scale=(640, 640),\n ratio_range=(0.8, 1.6),\n pad_val=114.0),\n dict(type='YOLOXHSVRandomAug'),\n dict(type='RandomFlip', flip_ratio=0.5),\n dict(type='Resize', img_scale=(640, 640), keep_ratio=True),\n dict(\n type='Pad',\n pad_to_square=True,\n pad_val=dict(img=(114.0, 114.0, 114.0))),\n dict(\n type='FilterAnnotations', min_gt_bbox_wh=(1, 1), keep_empty=False),\n dict(type='DefaultFormatBundle'),\n dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])\n ])\ntest_pipeline = [\n dict(\n type='LoadImageFromFile',\n file_client_args=dict(\n backend='petrel',\n path_mapping=dict({\n '.data/coco/':\n 's3://openmmlab/datasets/detection/coco/',\n 'data/coco/':\n 's3://openmmlab/datasets/detection/coco/'\n }))),\n dict(\n type='MultiScaleFlipAug',\n img_scale=(640, 640),\n flip=False,\n transforms=[\n dict(type='Resize', keep_ratio=True),\n dict(type='RandomFlip'),\n dict(\n type='Pad',\n pad_to_square=True,\n pad_val=dict(img=(114.0, 114.0, 114.0))),\n dict(type='DefaultFormatBundle'),\n dict(type='Collect', keys=['img'])\n ])\n]\ndata = dict(\n samples_per_gpu=8,\n workers_per_gpu=4,\n persistent_workers=True,\n train=dict(\n type='MultiImageMixDataset',\n dataset=dict(\n type='CocoDataset',\n ann_file='data/coco/annotations/instances_train2017.json',\n img_prefix='data/coco/train2017/',\n pipeline=[\n dict(\n type='LoadImageFromFile',\n file_client_args=dict(\n backend='petrel',\n path_mapping=dict({\n '.data/coco/':\n 's3://openmmlab/datasets/detection/coco/',\n 'data/coco/':\n 's3://openmmlab/datasets/detection/coco/'\n }))),\n dict(type='LoadAnnotations', with_bbox=True)\n ],\n filter_empty_gt=False),\n pipeline=[\n dict(type='Mosaic', img_scale=(640, 640), pad_val=114.0),\n dict(\n type='RandomAffine',\n scaling_ratio_range=(0.1, 2),\n border=(-320, -320)),\n dict(\n type='MixUp',\n img_scale=(640, 640),\n ratio_range=(0.8, 1.6),\n pad_val=114.0),\n dict(type='YOLOXHSVRandomAug'),\n dict(type='RandomFlip', flip_ratio=0.5),\n dict(type='Resize', img_scale=(640, 640), keep_ratio=True),\n dict(\n type='Pad',\n pad_to_square=True,\n pad_val=dict(img=(114.0, 114.0, 114.0))),\n dict(\n type='FilterAnnotations',\n min_gt_bbox_wh=(1, 1),\n keep_empty=False),\n dict(type='DefaultFormatBundle'),\n dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])\n ]),\n val=dict(\n type='CocoDataset',\n ann_file='data/coco/annotations/instances_val2017.json',\n img_prefix='data/coco/val2017/',\n pipeline=[\n dict(\n type='LoadImageFromFile',\n file_client_args=dict(\n backend='petrel',\n path_mapping=dict({\n '.data/coco/':\n 's3://openmmlab/datasets/detection/coco/',\n 'data/coco/':\n 's3://openmmlab/datasets/detection/coco/'\n }))),\n dict(\n type='MultiScaleFlipAug',\n img_scale=(640, 640),\n flip=False,\n transforms=[\n dict(type='Resize', keep_ratio=True),\n dict(type='RandomFlip'),\n dict(\n type='Pad',\n pad_to_square=True,\n pad_val=dict(img=(114.0, 114.0, 114.0))),\n dict(type='DefaultFormatBundle'),\n dict(type='Collect', keys=['img'])\n ])\n ]),\n test=dict(\n type='CocoDataset',\n ann_file='data/coco/annotations/instances_val2017.json',\n img_prefix='data/coco/val2017/',\n pipeline=[\n dict(\n type='LoadImageFromFile',\n file_client_args=dict(\n backend='petrel',\n path_mapping=dict({\n '.data/coco/':\n 's3://openmmlab/datasets/detection/coco/',\n 'data/coco/':\n 's3://openmmlab/datasets/detection/coco/'\n }))),\n dict(\n type='MultiScaleFlipAug',\n img_scale=(640, 640),\n flip=False,\n transforms=[\n dict(type='Resize', keep_ratio=True),\n dict(type='RandomFlip'),\n dict(\n type='Pad',\n pad_to_square=True,\n pad_val=dict(img=(114.0, 114.0, 114.0))),\n dict(type='DefaultFormatBundle'),\n dict(type='Collect', keys=['img'])\n ])\n ]))\nmax_epochs = 300\nnum_last_epochs = 15\ninterval = 10\nevaluation = dict(\n save_best='auto', interval=10, dynamic_intervals=[(285, 1)], metric='bbox')\nwork_dir = '/mnt/lustre/share_data/huanghaian/work_dir/yolox_l_1124'\ngpu_ids = range(0, 8)\n", "seed": 937171196, "exp_name": "yolox_l_8x8_300e_coco.py", "epoch": 289, "iter": 534361, "mmcv_version": "1.3.18", "time": "Tue Nov 30 00:07:05 2021", "CLASSES": ( "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light", "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch", "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone", "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush", ), "hook_msgs": { "last_ckpt": "/mnt/lustre/share_data/huanghaian/work_dir/yolox_l_1124/epoch_280.pth", "best_score": 0.491, "best_ckpt": "/mnt/lustre/share_data/huanghaian/work_dir/yolox_l_1124/best_bbox_mAP_epoch_289.pth", }, } }