return { "meta": { "epoch": 20, "iter": 19141, "cfg": "default_scope = 'mmpose'\ndefault_hooks = dict(\n timer=dict(type='IterTimerHook'),\n logger=dict(type='LoggerHook', interval=50),\n param_scheduler=dict(type='ParamSchedulerHook'),\n checkpoint=dict(\n type='CheckpointHook',\n interval=10,\n save_best='coco-wholebody/AP',\n rule='greater',\n max_keep_ckpts=1),\n sampler_seed=dict(type='DistSamplerSeedHook'),\n visualization=dict(type='PoseVisualizationHook', enable=False))\ncustom_hooks = [\n dict(\n type='EMAHook',\n ema_type='ExpMomentumEMA',\n momentum=0.0002,\n update_buffers=True,\n priority=49),\n dict(\n type='mmdet.PipelineSwitchHook',\n switch_epoch=240,\n switch_pipeline=[\n dict(type='LoadImage', backend_args=dict(backend='local')),\n dict(type='GetBBoxCenterScale'),\n dict(type='RandomFlip', direction='horizontal'),\n dict(type='RandomHalfBody'),\n dict(\n type='RandomBBoxTransform',\n shift_factor=0.0,\n scale_factor=[0.75, 1.25],\n rotate_factor=60),\n dict(type='TopdownAffine', input_size=(288, 384)),\n dict(type='mmdet.YOLOXHSVRandomAug'),\n dict(\n type='Albumentation',\n transforms=[\n dict(type='Blur', p=0.1),\n dict(type='MedianBlur', p=0.1),\n dict(\n type='CoarseDropout',\n max_holes=1,\n max_height=0.4,\n max_width=0.4,\n min_holes=1,\n min_height=0.2,\n min_width=0.2,\n p=0.5)\n ]),\n dict(\n type='GenerateTarget',\n encoder=dict(\n type='SimCCLabel',\n input_size=(288, 384),\n sigma=(6.0, 6.93),\n simcc_split_ratio=2.0,\n normalize=False,\n use_dark=False)),\n dict(type='PackPoseInputs')\n ])\n]\nenv_cfg = dict(\n cudnn_benchmark=False,\n mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),\n dist_cfg=dict(backend='nccl'))\nvis_backends = [dict(type='LocalVisBackend')]\nvisualizer = dict(\n type='PoseLocalVisualizer',\n vis_backends=[dict(type='LocalVisBackend')],\n name='visualizer')\nlog_processor = dict(\n type='LogProcessor', window_size=50, by_epoch=True, num_digits=6)\nlog_level = 'INFO'\nload_from = None\nresume = False\nbackend_args = dict(backend='local')\ntrain_cfg = dict(by_epoch=True, max_epochs=60, val_interval=10)\nval_cfg = dict()\ntest_cfg = dict()\nmax_epochs = 270\nstage2_num_epochs = 30\nbase_lr = 0.004\nrandomness = dict(seed=21)\noptim_wrapper = dict(\n type='OptimWrapper',\n optimizer=dict(type='AdamW', lr=0.004, weight_decay=0.05),\n paramwise_cfg=dict(\n norm_decay_mult=0, bias_decay_mult=0, bypass_duplicate=True),\n clip_grad=dict(max_norm=1.0, norm_type=2))\nparam_scheduler = [\n dict(\n type='LinearLR', start_factor=1e-05, by_epoch=False, begin=0,\n end=1000),\n dict(\n type='CosineAnnealingLR',\n eta_min=0.0002,\n begin=135,\n end=270,\n T_max=135,\n by_epoch=True,\n convert_to_iter_based=True)\n]\nauto_scale_lr = dict(base_batch_size=512)\ncodec = dict(\n type='SimCCLabel',\n input_size=(288, 384),\n sigma=(6.0, 6.93),\n simcc_split_ratio=2.0,\n normalize=False,\n use_dark=False)\nmodel = dict(\n type='PoseEstimatorDistiller',\n two_dis=True,\n teacher_pretrained=\n '/home/yangzhendong/Projects/mmpose/work_dirs/rtmpose_x_dis_l__coco-ubody-384x288/rtm-l_66.4.pth',\n teacher_cfg=\n 'configs/wholebody_2d_keypoint/rtmpose/ubody/rtmpose-l_8xb32-270e_coco-ubody-wholebody-384x288.py',\n student_cfg=\n 'configs/wholebody_2d_keypoint/rtmpose/ubody/rtmpose-l_8xb32-270e_coco-ubody-wholebody-384x288.py',\n distill_cfg=[\n dict(methods=[\n dict(\n type='MGD_2Loss',\n name='loss_mgd',\n use_this=True,\n student_channels=1024,\n teacher_channels=1024,\n alpha_mgd=7e-05,\n lambda_mgd=0.15)\n ]),\n dict(methods=[\n dict(type='NKDLoss', name='loss_nkd', use_this=True, weight=1)\n ])\n ],\n data_preprocessor=dict(\n type='PoseDataPreprocessor',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n bgr_to_rgb=True),\n train_cfg=dict(max_epochs=60, val_interval=10))\ndataset_type = 'CocoWholeBodyDataset'\ndata_mode = 'topdown'\ndata_root = '/data/'\ntrain_pipeline = [\n dict(type='LoadImage', backend_args=dict(backend='local')),\n dict(type='GetBBoxCenterScale'),\n dict(type='RandomFlip', direction='horizontal'),\n dict(type='RandomHalfBody'),\n dict(\n type='RandomBBoxTransform', scale_factor=[0.6, 1.4], rotate_factor=80),\n dict(type='TopdownAffine', input_size=(288, 384)),\n dict(type='mmdet.YOLOXHSVRandomAug'),\n dict(\n type='Albumentation',\n transforms=[\n dict(type='Blur', p=0.1),\n dict(type='MedianBlur', p=0.1),\n dict(\n type='CoarseDropout',\n max_holes=1,\n max_height=0.4,\n max_width=0.4,\n min_holes=1,\n min_height=0.2,\n min_width=0.2,\n p=1.0)\n ]),\n dict(\n type='GenerateTarget',\n encoder=dict(\n type='SimCCLabel',\n input_size=(288, 384),\n sigma=(6.0, 6.93),\n simcc_split_ratio=2.0,\n normalize=False,\n use_dark=False)),\n dict(type='PackPoseInputs')\n]\nval_pipeline = [\n dict(type='LoadImage', backend_args=dict(backend='local')),\n dict(type='GetBBoxCenterScale'),\n dict(type='TopdownAffine', input_size=(288, 384)),\n dict(type='PackPoseInputs')\n]\ntrain_pipeline_stage2 = [\n dict(type='LoadImage', backend_args=dict(backend='local')),\n dict(type='GetBBoxCenterScale'),\n dict(type='RandomFlip', direction='horizontal'),\n dict(type='RandomHalfBody'),\n dict(\n type='RandomBBoxTransform',\n shift_factor=0.0,\n scale_factor=[0.75, 1.25],\n rotate_factor=60),\n dict(type='TopdownAffine', input_size=(288, 384)),\n dict(type='mmdet.YOLOXHSVRandomAug'),\n dict(\n type='Albumentation',\n transforms=[\n dict(type='Blur', p=0.1),\n dict(type='MedianBlur', p=0.1),\n dict(\n type='CoarseDropout',\n max_holes=1,\n max_height=0.4,\n max_width=0.4,\n min_holes=1,\n min_height=0.2,\n min_width=0.2,\n p=0.5)\n ]),\n dict(\n type='GenerateTarget',\n encoder=dict(\n type='SimCCLabel',\n input_size=(288, 384),\n sigma=(6.0, 6.93),\n simcc_split_ratio=2.0,\n normalize=False,\n use_dark=False)),\n dict(type='PackPoseInputs')\n]\ndatasets = [\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='coco/annotations/coco_wholebody_train_v1.0.json',\n data_prefix=dict(img='coco/train2017/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Magic_show/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Magic_show/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Entertainment/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Entertainment/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/ConductMusic/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/ConductMusic/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Online_class/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Online_class/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/TalkShow/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/TalkShow/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Speech/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Speech/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Fitness/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Fitness/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Interview/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Interview/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Olympic/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Olympic/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/TVShow/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/TVShow/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Singing/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Singing/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/SignLanguage/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/SignLanguage/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Movie/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Movie/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/LiveVlog/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/LiveVlog/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/VideoConference/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/VideoConference/'),\n pipeline=[])\n]\ndataset_coco = dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='coco/annotations/coco_wholebody_train_v1.0.json',\n data_prefix=dict(img='coco/train2017/'),\n pipeline=[])\nscene = [\n 'Magic_show', 'Entertainment', 'ConductMusic', 'Online_class', 'TalkShow',\n 'Speech', 'Fitness', 'Interview', 'Olympic', 'TVShow', 'Singing',\n 'SignLanguage', 'Movie', 'LiveVlog', 'VideoConference'\n]\ni = 14\ntrain_dataloader = dict(\n batch_size=32,\n num_workers=10,\n persistent_workers=True,\n sampler=dict(type='DefaultSampler', shuffle=True),\n dataset=dict(\n type='CombinedDataset',\n metainfo=dict(from_file='configs/_base_/datasets/coco_wholebody.py'),\n datasets=[\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='coco/annotations/coco_wholebody_train_v1.0.json',\n data_prefix=dict(img='coco/train2017/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file=\n 'UBody/annotations/Magic_show/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Magic_show/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file=\n 'UBody/annotations/Entertainment/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Entertainment/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file=\n 'UBody/annotations/ConductMusic/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/ConductMusic/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file=\n 'UBody/annotations/Online_class/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Online_class/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/TalkShow/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/TalkShow/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Speech/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Speech/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Fitness/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Fitness/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Interview/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Interview/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Olympic/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Olympic/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/TVShow/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/TVShow/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Singing/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Singing/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file=\n 'UBody/annotations/SignLanguage/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/SignLanguage/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Movie/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Movie/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/LiveVlog/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/LiveVlog/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file=\n 'UBody/annotations/VideoConference/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/VideoConference/'),\n pipeline=[])\n ],\n pipeline=[\n dict(type='LoadImage', backend_args=dict(backend='local')),\n dict(type='GetBBoxCenterScale'),\n dict(type='RandomFlip', direction='horizontal'),\n dict(type='RandomHalfBody'),\n dict(\n type='RandomBBoxTransform',\n scale_factor=[0.6, 1.4],\n rotate_factor=80),\n dict(type='TopdownAffine', input_size=(288, 384)),\n dict(type='mmdet.YOLOXHSVRandomAug'),\n dict(\n type='Albumentation',\n transforms=[\n dict(type='Blur', p=0.1),\n dict(type='MedianBlur', p=0.1),\n dict(\n type='CoarseDropout',\n max_holes=1,\n max_height=0.4,\n max_width=0.4,\n min_holes=1,\n min_height=0.2,\n min_width=0.2,\n p=1.0)\n ]),\n dict(\n type='GenerateTarget',\n encoder=dict(\n type='SimCCLabel',\n input_size=(288, 384),\n sigma=(6.0, 6.93),\n simcc_split_ratio=2.0,\n normalize=False,\n use_dark=False)),\n dict(type='PackPoseInputs')\n ],\n test_mode=False))\nval_dataloader = dict(\n batch_size=32,\n num_workers=10,\n persistent_workers=True,\n drop_last=False,\n sampler=dict(type='DefaultSampler', shuffle=False, round_up=False),\n dataset=dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='coco/annotations/coco_wholebody_val_v1.0.json',\n bbox_file=\n '/data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json',\n data_prefix=dict(img='coco/val2017/'),\n test_mode=True,\n pipeline=[\n dict(type='LoadImage', backend_args=dict(backend='local')),\n dict(type='GetBBoxCenterScale'),\n dict(type='TopdownAffine', input_size=(288, 384)),\n dict(type='PackPoseInputs')\n ]))\ntest_dataloader = dict(\n batch_size=32,\n num_workers=10,\n persistent_workers=True,\n drop_last=False,\n sampler=dict(type='DefaultSampler', shuffle=False, round_up=False),\n dataset=dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='coco/annotations/coco_wholebody_val_v1.0.json',\n bbox_file=\n '/data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json',\n data_prefix=dict(img='coco/val2017/'),\n test_mode=True,\n pipeline=[\n dict(type='LoadImage', backend_args=dict(backend='local')),\n dict(type='GetBBoxCenterScale'),\n dict(type='TopdownAffine', input_size=(288, 384)),\n dict(type='PackPoseInputs')\n ]))\nval_evaluator = dict(\n type='CocoWholeBodyMetric',\n ann_file='/data/coco/annotations/coco_wholebody_val_v1.0.json')\ntest_evaluator = dict(\n type='CocoWholeBodyMetric',\n ann_file='/data/coco/annotations/coco_wholebody_val_v1.0.json')\nfind_unused_parameters = True\nmgd = True\nnkd = True\nlauncher = 'pytorch'\nwork_dir = './work_dirs/rtmpose_l-ll__coco-ubody-384x288'\n", "seed": 21, "experiment_name": "rtmpose_l-ll__coco-ubody-384x288_20230706_095637", "time": "20230706_131003", "mmengine_version": "0.7.2", "dataset_meta": { "dataset_name": "coco_wholebody", "num_keypoints": 133, "keypoint_colors": { "type": "ndarray", "repr": "array([[ 51, 153, 255],\n [ 51, 153, 255],\n [ 51, 153, 255],\n [ 51, 153, 255],\n [ 51, 153, 255],\n [ 0, 255, 0],\n [255, 128, 0],\n [ 0, 255, 0],\n [255, 128, 0],\n [ 0, 255, 0],\n [255, 128, 0],\n [ 0, 255, 0],\n [255, 128, 0],\n [ 0, 255, 0],\n [255, 128, 0],\n [ 0, 255, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 153, 255],\n [255, 153, 255],\n [255, 153, 255],\n [255, 153, 255],\n [102, 178, 255],\n [102, 178, 255],\n [102, 178, 255],\n [102, 178, 255],\n [255, 51, 51],\n [255, 51, 51],\n [255, 51, 51],\n [255, 51, 51],\n [ 0, 255, 0],\n [ 0, 255, 0],\n [ 0, 255, 0],\n [ 0, 255, 0],\n [255, 255, 255],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 153, 255],\n [255, 153, 255],\n [255, 153, 255],\n [255, 153, 255],\n [102, 178, 255],\n [102, 178, 255],\n [102, 178, 255],\n [102, 178, 255],\n [255, 51, 51],\n [255, 51, 51],\n [255, 51, 51],\n [255, 51, 51],\n [ 0, 255, 0],\n [ 0, 255, 0],\n [ 0, 255, 0],\n [ 0, 255, 0]], dtype=uint8)", "dict": {}, }, "num_skeleton_links": 65, "skeleton_link_colors": { "type": "ndarray", "repr": "array([[ 0, 255, 0],\n [ 0, 255, 0],\n [255, 128, 0],\n [255, 128, 0],\n [ 51, 153, 255],\n [ 51, 153, 255],\n [ 51, 153, 255],\n [ 51, 153, 255],\n [ 0, 255, 0],\n [255, 128, 0],\n [ 0, 255, 0],\n [255, 128, 0],\n [ 51, 153, 255],\n [ 51, 153, 255],\n [ 51, 153, 255],\n [ 51, 153, 255],\n [ 51, 153, 255],\n [ 51, 153, 255],\n [ 51, 153, 255],\n [ 0, 255, 0],\n [ 0, 255, 0],\n [ 0, 255, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 153, 255],\n [255, 153, 255],\n [255, 153, 255],\n [255, 153, 255],\n [102, 178, 255],\n [102, 178, 255],\n [102, 178, 255],\n [102, 178, 255],\n [255, 51, 51],\n [255, 51, 51],\n [255, 51, 51],\n [255, 51, 51],\n [ 0, 255, 0],\n [ 0, 255, 0],\n [ 0, 255, 0],\n [ 0, 255, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 153, 255],\n [255, 153, 255],\n [255, 153, 255],\n [255, 153, 255],\n [102, 178, 255],\n [102, 178, 255],\n [102, 178, 255],\n [102, 178, 255],\n [255, 51, 51],\n [255, 51, 51],\n [255, 51, 51],\n [255, 51, 51],\n [ 0, 255, 0],\n [ 0, 255, 0],\n [ 0, 255, 0],\n [ 0, 255, 0]], dtype=uint8)", "dict": {}, }, "dataset_keypoint_weights": { "type": "ndarray", "repr": "array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,\n 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,\n 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,\n 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,\n 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,\n 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,\n 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,\n 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],\n dtype=float32)", "dict": {}, }, "sigmas": { "type": "ndarray", "repr": "array([0.026, 0.025, 0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072,\n 0.062, 0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089, 0.068,\n 0.066, 0.066, 0.092, 0.094, 0.094, 0.042, 0.043, 0.044, 0.043,\n 0.04 , 0.035, 0.031, 0.025, 0.02 , 0.023, 0.029, 0.032, 0.037,\n 0.038, 0.043, 0.041, 0.045, 0.013, 0.012, 0.011, 0.011, 0.012,\n 0.012, 0.011, 0.011, 0.013, 0.015, 0.009, 0.007, 0.007, 0.007,\n 0.012, 0.009, 0.008, 0.016, 0.01 , 0.017, 0.011, 0.009, 0.011,\n 0.009, 0.007, 0.013, 0.008, 0.011, 0.012, 0.01 , 0.034, 0.008,\n 0.008, 0.009, 0.008, 0.008, 0.007, 0.01 , 0.008, 0.009, 0.009,\n 0.009, 0.007, 0.007, 0.008, 0.011, 0.008, 0.008, 0.008, 0.01 ,\n 0.008, 0.029, 0.022, 0.035, 0.037, 0.047, 0.026, 0.025, 0.024,\n 0.035, 0.018, 0.024, 0.022, 0.026, 0.017, 0.021, 0.021, 0.032,\n 0.02 , 0.019, 0.022, 0.031, 0.029, 0.022, 0.035, 0.037, 0.047,\n 0.026, 0.025, 0.024, 0.035, 0.018, 0.024, 0.022, 0.026, 0.017,\n 0.021, 0.021, 0.032, 0.02 , 0.019, 0.022, 0.031], dtype=float32)", "dict": {}, }, "keypoint_id2name": { "0": "nose", "1": "left_eye", "2": "right_eye", "3": "left_ear", "4": "right_ear", "5": "left_shoulder", "6": "right_shoulder", "7": "left_elbow", "8": "right_elbow", "9": "left_wrist", "10": "right_wrist", "11": "left_hip", "12": "right_hip", "13": "left_knee", "14": "right_knee", "15": "left_ankle", "16": "right_ankle", "17": "left_big_toe", "18": "left_small_toe", "19": "left_heel", "20": "right_big_toe", "21": "right_small_toe", "22": "right_heel", "23": "face-0", "24": "face-1", "25": "face-2", "26": "face-3", "27": "face-4", "28": "face-5", "29": "face-6", "30": "face-7", "31": "face-8", "32": "face-9", "33": "face-10", "34": "face-11", "35": "face-12", "36": "face-13", "37": "face-14", "38": "face-15", "39": "face-16", "40": "face-17", "41": "face-18", "42": "face-19", "43": "face-20", "44": "face-21", "45": "face-22", "46": "face-23", "47": "face-24", "48": "face-25", "49": "face-26", "50": "face-27", "51": "face-28", "52": "face-29", "53": "face-30", "54": "face-31", "55": "face-32", "56": "face-33", "57": "face-34", "58": "face-35", "59": "face-36", "60": "face-37", "61": "face-38", "62": "face-39", "63": "face-40", "64": "face-41", "65": "face-42", "66": "face-43", "67": "face-44", "68": "face-45", "69": "face-46", "70": "face-47", "71": "face-48", "72": "face-49", "73": "face-50", "74": "face-51", "75": "face-52", "76": "face-53", "77": "face-54", "78": "face-55", "79": "face-56", "80": "face-57", "81": "face-58", "82": "face-59", "83": "face-60", "84": "face-61", "85": "face-62", "86": "face-63", "87": "face-64", "88": "face-65", "89": "face-66", "90": "face-67", "91": "left_hand_root", "92": "left_thumb1", "93": "left_thumb2", "94": "left_thumb3", "95": "left_thumb4", "96": "left_forefinger1", "97": "left_forefinger2", "98": "left_forefinger3", "99": "left_forefinger4", "100": "left_middle_finger1", "101": "left_middle_finger2", "102": "left_middle_finger3", "103": "left_middle_finger4", "104": "left_ring_finger1", "105": "left_ring_finger2", "106": "left_ring_finger3", "107": "left_ring_finger4", "108": "left_pinky_finger1", "109": "left_pinky_finger2", "110": "left_pinky_finger3", "111": "left_pinky_finger4", "112": "right_hand_root", "113": "right_thumb1", "114": "right_thumb2", "115": "right_thumb3", "116": "right_thumb4", "117": "right_forefinger1", "118": "right_forefinger2", "119": "right_forefinger3", "120": "right_forefinger4", "121": "right_middle_finger1", "122": "right_middle_finger2", "123": "right_middle_finger3", "124": "right_middle_finger4", "125": "right_ring_finger1", "126": "right_ring_finger2", "127": "right_ring_finger3", "128": "right_ring_finger4", "129": "right_pinky_finger1", "130": "right_pinky_finger2", "131": "right_pinky_finger3", "132": "right_pinky_finger4", }, "keypoint_name2id": { "nose": 0, "left_eye": 1, "right_eye": 2, "left_ear": 3, "right_ear": 4, "left_shoulder": 5, "right_shoulder": 6, "left_elbow": 7, "right_elbow": 8, "left_wrist": 9, "right_wrist": 10, "left_hip": 11, "right_hip": 12, "left_knee": 13, "right_knee": 14, "left_ankle": 15, "right_ankle": 16, "left_big_toe": 17, "left_small_toe": 18, "left_heel": 19, "right_big_toe": 20, "right_small_toe": 21, "right_heel": 22, "face-0": 23, "face-1": 24, "face-2": 25, "face-3": 26, "face-4": 27, "face-5": 28, "face-6": 29, "face-7": 30, "face-8": 31, "face-9": 32, "face-10": 33, "face-11": 34, "face-12": 35, "face-13": 36, "face-14": 37, "face-15": 38, "face-16": 39, "face-17": 40, "face-18": 41, "face-19": 42, "face-20": 43, "face-21": 44, "face-22": 45, "face-23": 46, "face-24": 47, "face-25": 48, "face-26": 49, "face-27": 50, "face-28": 51, "face-29": 52, "face-30": 53, "face-31": 54, "face-32": 55, "face-33": 56, "face-34": 57, "face-35": 58, "face-36": 59, "face-37": 60, "face-38": 61, "face-39": 62, "face-40": 63, "face-41": 64, "face-42": 65, "face-43": 66, "face-44": 67, "face-45": 68, "face-46": 69, "face-47": 70, "face-48": 71, "face-49": 72, "face-50": 73, "face-51": 74, "face-52": 75, "face-53": 76, "face-54": 77, "face-55": 78, "face-56": 79, "face-57": 80, "face-58": 81, "face-59": 82, "face-60": 83, "face-61": 84, "face-62": 85, "face-63": 86, "face-64": 87, "face-65": 88, "face-66": 89, "face-67": 90, "left_hand_root": 91, "left_thumb1": 92, "left_thumb2": 93, "left_thumb3": 94, "left_thumb4": 95, "left_forefinger1": 96, "left_forefinger2": 97, "left_forefinger3": 98, "left_forefinger4": 99, "left_middle_finger1": 100, "left_middle_finger2": 101, "left_middle_finger3": 102, "left_middle_finger4": 103, "left_ring_finger1": 104, "left_ring_finger2": 105, "left_ring_finger3": 106, "left_ring_finger4": 107, "left_pinky_finger1": 108, "left_pinky_finger2": 109, "left_pinky_finger3": 110, "left_pinky_finger4": 111, "right_hand_root": 112, "right_thumb1": 113, "right_thumb2": 114, "right_thumb3": 115, "right_thumb4": 116, "right_forefinger1": 117, "right_forefinger2": 118, "right_forefinger3": 119, "right_forefinger4": 120, "right_middle_finger1": 121, "right_middle_finger2": 122, "right_middle_finger3": 123, "right_middle_finger4": 124, "right_ring_finger1": 125, "right_ring_finger2": 126, "right_ring_finger3": 127, "right_ring_finger4": 128, "right_pinky_finger1": 129, "right_pinky_finger2": 130, "right_pinky_finger3": 131, "right_pinky_finger4": 132, }, "upper_body_ids": { "0": 0, "1": 1, "2": 2, "3": 3, "4": 4, "5": 5, "6": 6, "7": 7, "8": 8, "9": 9, "10": 10, }, "lower_body_ids": { "0": 11, "1": 12, "2": 13, "3": 14, "4": 15, "5": 16, "6": 17, "7": 18, "8": 19, "9": 20, "10": 21, "11": 22, }, "flip_indices": { "0": 0, "1": 2, "2": 1, "3": 4, "4": 3, "5": 6, "6": 5, "7": 8, "8": 7, "9": 10, "10": 9, "11": 12, "12": 11, "13": 14, "14": 13, "15": 16, "16": 15, "17": 20, "18": 21, "19": 22, "20": 17, "21": 18, "22": 19, "23": 39, "24": 38, "25": 37, "26": 36, "27": 35, "28": 34, "29": 33, "30": 32, "31": 31, "32": 30, "33": 29, "34": 28, "35": 27, "36": 26, "37": 25, "38": 24, "39": 23, "40": 49, "41": 48, "42": 47, "43": 46, "44": 45, "45": 44, "46": 43, "47": 42, "48": 41, "49": 40, "50": 50, "51": 51, "52": 52, "53": 53, "54": 58, "55": 57, "56": 56, "57": 55, "58": 54, "59": 68, "60": 67, "61": 66, "62": 65, "63": 70, "64": 69, "65": 62, "66": 61, "67": 60, "68": 59, "69": 64, "70": 63, "71": 77, "72": 76, "73": 75, "74": 74, "75": 73, "76": 72, "77": 71, "78": 82, "79": 81, "80": 80, "81": 79, "82": 78, "83": 87, "84": 86, "85": 85, "86": 84, "87": 83, "88": 90, "89": 89, "90": 88, "91": 112, "92": 113, "93": 114, "94": 115, "95": 116, "96": 117, "97": 118, "98": 119, "99": 120, "100": 121, "101": 122, "102": 123, "103": 124, "104": 125, "105": 126, "106": 127, "107": 128, "108": 129, "109": 130, "110": 131, "111": 132, "112": 91, "113": 92, "114": 93, "115": 94, "116": 95, "117": 96, "118": 97, "119": 98, "120": 99, "121": 100, "122": 101, "123": 102, "124": 103, "125": 104, "126": 105, "127": 106, "128": 107, "129": 108, "130": 109, "131": 110, "132": 111, }, "flip_pairs": { "0": (2, 1), "1": (1, 2), "2": (4, 3), "3": (3, 4), "4": (6, 5), "5": (5, 6), "6": (8, 7), "7": (7, 8), "8": (10, 9), "9": (9, 10), "10": (12, 11), "11": (11, 12), "12": (14, 13), "13": (13, 14), "14": (16, 15), "15": (15, 16), "16": (20, 17), "17": (21, 18), "18": (22, 19), "19": (17, 20), "20": (18, 21), "21": (19, 22), "22": (39, 23), "23": (38, 24), "24": (37, 25), "25": (36, 26), "26": (35, 27), "27": (34, 28), "28": (33, 29), "29": (32, 30), "30": (30, 32), "31": (29, 33), "32": (28, 34), "33": (27, 35), "34": (26, 36), "35": (25, 37), "36": (24, 38), "37": (23, 39), "38": (49, 40), "39": (48, 41), "40": (47, 42), "41": (46, 43), "42": (45, 44), "43": (44, 45), "44": (43, 46), "45": (42, 47), "46": (41, 48), "47": (40, 49), "48": (58, 54), "49": (57, 55), "50": (55, 57), "51": (54, 58), "52": (68, 59), "53": (67, 60), "54": (66, 61), "55": (65, 62), "56": (70, 63), "57": (69, 64), "58": (62, 65), "59": (61, 66), "60": (60, 67), "61": (59, 68), "62": (64, 69), "63": (63, 70), "64": (77, 71), "65": (76, 72), "66": (75, 73), "67": (73, 75), "68": (72, 76), "69": (71, 77), "70": (82, 78), "71": (81, 79), "72": (79, 81), "73": (78, 82), "74": (87, 83), "75": (86, 84), "76": (84, 86), "77": (83, 87), "78": (90, 88), "79": (88, 90), "80": (112, 91), "81": (113, 92), "82": (114, 93), "83": (115, 94), "84": (116, 95), "85": (117, 96), "86": (118, 97), "87": (119, 98), "88": (120, 99), "89": (121, 100), "90": (122, 101), "91": (123, 102), "92": (124, 103), "93": (125, 104), "94": (126, 105), "95": (127, 106), "96": (128, 107), "97": (129, 108), "98": (130, 109), "99": (131, 110), "100": (132, 111), "101": (91, 112), "102": (92, 113), "103": (93, 114), "104": (94, 115), "105": (95, 116), "106": (96, 117), "107": (97, 118), "108": (98, 119), "109": (99, 120), "110": (100, 121), "111": (101, 122), "112": (102, 123), "113": (103, 124), "114": (104, 125), "115": (105, 126), "116": (106, 127), "117": (107, 128), "118": (108, 129), "119": (109, 130), "120": (110, 131), "121": (111, 132), }, "skeleton_links": { "0": (15, 13), "1": (13, 11), "2": (16, 14), "3": (14, 12), "4": (11, 12), "5": (5, 11), "6": (6, 12), "7": (5, 6), "8": (5, 7), "9": (6, 8), "10": (7, 9), "11": (8, 10), "12": (1, 2), "13": (0, 1), "14": (0, 2), "15": (1, 3), "16": (2, 4), "17": (3, 5), "18": (4, 6), "19": (15, 17), "20": (15, 18), "21": (15, 19), "22": (16, 20), "23": (16, 21), "24": (16, 22), "25": (91, 92), "26": (92, 93), "27": (93, 94), "28": (94, 95), "29": (91, 96), "30": (96, 97), "31": (97, 98), "32": (98, 99), "33": (91, 100), "34": (100, 101), "35": (101, 102), "36": (102, 103), "37": (91, 104), "38": (104, 105), "39": (105, 106), "40": (106, 107), "41": (91, 108), "42": (108, 109), "43": (109, 110), "44": (110, 111), "45": (112, 113), "46": (113, 114), "47": (114, 115), "48": (115, 116), "49": (112, 117), "50": (117, 118), "51": (118, 119), "52": (119, 120), "53": (112, 121), "54": (121, 122), "55": (122, 123), "56": (123, 124), "57": (112, 125), "58": (125, 126), "59": (126, 127), "60": (127, 128), "61": (112, 129), "62": (129, 130), "63": (130, 131), "64": (131, 132), }, }, }, "message_hub": { "log_scalars": { "train/lr": { "type": "HistoryBuffer", "repr": "", "dict": { "max_length": 1000000, "_log_history": array( [ 4.00000000e-08, 4.04396396e-06, 8.04792793e-06, ..., 4.00000000e-03, 4.00000000e-03, 4.00000000e-03, ] ), "_count_history": array([1, 1, 1, ..., 1, 1, 1]), }, }, "train/data_time": { "type": "HistoryBuffer", "repr": "", "dict": { "max_length": 1000000, "_log_history": array( [ 3.95293117, 0.0074091, 0.00770521, ..., 0.00679278, 0.00740361, 0.00745177, ] ), "_count_history": array([1, 1, 1, ..., 1, 1, 1]), }, }, "train/grad_norm": { "type": "HistoryBuffer", "repr": "", "dict": { "max_length": 1000000, "_log_history": array( [ 11.11996365, 11.15369606, 49.0441246, ..., 0.25355035, 0.2090449, 0.11485825, ] ), "_count_history": array([1, 1, 1, ..., 1, 1, 1]), }, }, "train/loss": { "type": "HistoryBuffer", "repr": "", "dict": { "max_length": 1000000, "_log_history": array( [ 5.68249035, 5.0594511, 5.4551425, ..., 0.01963938, 0.01610118, 0.01636601, ] ), "_count_history": array([1, 1, 1, ..., 1, 1, 1]), }, }, "train/loss_mgd": { "type": "HistoryBuffer", "repr": "", "dict": { "max_length": 1000000, "_log_history": array([0.0, 0.0, 0.0, ..., 0.0, 0.0, 0.0]), "_count_history": array([1, 1, 1, ..., 1, 1, 1]), }, }, "train/loss_nkd": { "type": "HistoryBuffer", "repr": "", "dict": { "max_length": 1000000, "_log_history": array( [ 5.68249035, 5.0594511, 5.4551425, ..., 0.01963938, 0.01610118, 0.01636601, ] ), "_count_history": array([1, 1, 1, ..., 1, 1, 1]), }, }, "train/time": { "type": "HistoryBuffer", "repr": "", "dict": { "max_length": 1000000, "_log_history": array( [ 4.91398549, 0.79516959, 0.71079898, ..., 0.30416846, 0.30426216, 0.2064755, ] ), "_count_history": array([1, 1, 1, ..., 1, 1, 1]), }, }, "val/data_time": { "type": "HistoryBuffer", "repr": "", "dict": { "max_length": 1000000, "_log_history": array( [ 1.47744179, 0.00316739, 0.02906036, 0.0020175, 0.06879759, 0.00192761, 0.00177884, 0.0019176, 0.00189304, 0.06297088, 0.13750148, 0.00214744, 0.08554554, 0.00192618, 0.07338119, 0.00180912, 0.00192857, 0.00173521, 0.00198412, 0.03363252, 0.12986469, 0.00204635, 0.08262658, 0.00196457, 0.05943441, 0.00195146, 0.00202107, 0.00194573, 0.00204587, 0.03186965, 0.12682581, 0.00199747, 0.09326196, 0.00191426, 0.05833673, 0.001966, 0.00191307, 0.00218177, 0.0020752, 0.03238249, 0.12625265, 0.00182629, 0.08623958, 0.00196886, 0.06152105, 0.00205874, 0.00179124, 0.00197077, 0.0018785, 0.03343606, 0.13127255, 0.00182199, 0.08809018, 0.00199485, 0.06871533, 0.00206208, 0.00200915, 0.00219369, 0.00190544, 0.04403353, 0.11918569, 0.00205684, 0.08583951, 0.00192833, 0.06924176, 0.00198174, 0.00179362, 0.00192404, 0.0018549, 0.03635216, 0.11691809, 0.00197339, 0.08333874, 0.00205708, 0.06999922, 0.00202775, 0.00200152, 0.00194836, 0.00207043, 0.03334498, 0.11875772, 0.0018549, 0.08297753, 0.00195312, 0.07152581, 0.00202441, 0.00200534, 0.00199294, 0.00198007, 0.03561354, 0.11900854, 0.00195193, 0.09063125, 0.00196934, 0.07264352, 0.00203276, 0.00198436, 0.00201416, 0.00195312, 0.03830624, 0.12220502, 0.00175047, 0.10234404, 0.00186467, 0.06526279, 0.00209951, 0.00194144, 0.00260091, 0.00199866, 0.03196359, 0.13335443, 0.00197029, 0.10349679, 0.00189662, 0.06753588, 0.00204611, 0.00206614, 0.00204206, 0.00604582, 0.03769493, 0.12512541, 0.00185943, 0.09661746, 0.00196123, 0.06805897, 0.00203204, 0.00200987, 0.0020287, 0.002249, 0.03546643, 0.12469983, 0.00194216, 0.10205746, 0.00200677, 0.06417751, 0.00195241, 0.00187564, 0.0020268, 0.00204587, 0.03659987, 0.12423182, 0.00197554, 0.09105754, 0.00182152, 0.06506276, 0.00193286, 0.00220752, 0.00208735, 0.00203109, 0.02984238, 0.13096952, 0.00189471, 0.10014105, 0.00193787, 0.06434989, 0.00186539, 0.0020299, 0.00258279, 0.00198746, 0.03235316, 0.13156176, 0.00188994, 0.31807137, 0.00195837, 0.05942225, 0.00178337, 0.00194836, 0.0017488, 0.00194836, 0.0318954, 0.13475227, 0.00185561, 0.09329176, 0.00193024, 0.06253695, 0.00198555, 0.00198007, 0.00204992, 0.00200462, 0.0329771, 0.12815547, 0.00202322, 0.09558058, 0.00199485, 0.05368853, 0.00182343, 0.00192261, 0.00203085, 0.00202465, 0.03354144, 0.11547136, 0.00191784, 0.09216213, 0.00279331, 0.06041622, 0.00186992, 0.00215554, 0.00210905, 0.00206828, 0.03118777, 0.10724878, 0.00212955, 0.08734512, 0.0019238, 0.06167483, 0.00175571, 0.00206041, 0.00204659, 0.00222683, 0.03199935, 0.10881948, 0.00210905, 0.0949719, 0.00198746, 0.06195688, 0.00192738, 0.00203586, 0.00233316, 0.00204325, 0.03177953, 0.12731242, 0.00189495, 0.1193614, 0.00186276, 0.06221581, 0.00195432, 0.00196457, 0.00223327, 0.00196385, 0.03018069, 0.13117361, 0.0019331, 0.08740425, 0.00196123, 0.05874848, 0.00174642, 0.00202942, 0.00206804, 0.00204372, 0.03373623, 0.13102603, 0.00187111, 0.09270334, 0.00186181, 0.06286645, 0.00176549, 0.00174689, 0.00291705, 0.00197935, 0.0315063, 0.1370554, 0.00173688, 0.09211826, 0.00191092, 0.06521511, 0.00180054, 0.0016911, 0.00307393, 0.00196624, 0.02692199, 0.12286973, 0.00203872, 0.08835769, 0.00192857, 0.05818439, 0.00176716, 0.00175095, 0.00195074, 0.00179577, 0.03165555, 0.1309855, 0.00181246, 0.08928084, 0.00189209, 0.05669618, 0.0018394, 0.00176454, 0.00208783, 0.00176263, 0.03079629, 0.10864806, 0.00195551, 0.09387875, 0.00193477, 0.06505013, 0.00198674, 0.00194025, 0.0020659, 0.00249863, 0.03436542, 0.12449789, 0.00196147, 0.09171534, 0.00183201, 0.06497216, 0.00201368, 0.0019629, 0.00204992, 0.00189948, 0.02466297, 0.12291718, 0.0017395, 0.1006248, 0.00180221, 0.0594449, 0.00186348, 0.00213671, 0.00203466, 0.00198507, 0.02406883, 0.11396098, 0.00184751, 0.10133624, 0.00186777, 0.07067561, 0.0020647, 0.00195503, 0.00209045, 0.00197649, 0.02368283, 0.11904931, 0.00190568, 0.09550023, 0.0016799, 0.07495761, 0.00190496, 0.00197101, 0.00207734, 0.00206161, 0.03298855, 0.11649346, 0.00198555, 0.09497046, 0.00180554, 0.06580138, 0.00185943, 0.00231504, 0.00209904, 0.00205135, 0.02516103, 0.1223762, 0.00273085, 0.09882188, 0.00179219, 0.06333375, 0.00182867, 0.00204492, 0.0020206, 0.00209546, 0.0316062, 0.12984633, 0.00202632, 0.09642792, 0.00184369, 0.06027317, 0.00184512, 0.00197649, 0.00176549, 0.00214505, 0.03454709, 0.13127899, 0.00218081, 0.09881902, 0.00168705, 0.06654906, 0.0019424, 0.00197625, 0.00194693, 0.00195813, 0.03715682, 0.13207912, 0.00186062, 0.09636188, 0.00214171, 0.07180452, 0.00188136, 0.00196385, 0.00194216, 0.00196862, 0.03592992, 0.14072061, 0.00187039, 0.0911727, 0.00186372, 0.07167292, 0.00211525, 0.00298381, 0.00187612, 0.00182271, 0.0341928, 0.10658956, 0.00172353, 0.07325006, 0.00173497, 0.06289196, 0.00169611, 0.00178838, 0.00171781, 0.00176764, 0.01166058, 0.03083849, 0.00174546, 0.02043772, 0.00171232, 0.01844621, 0.00170493, 0.00174546, 0.28942633, 0.00210929, 0.08796358, 0.00198007, 0.05707955, 0.0019424, 0.00210452, 0.00294161, 0.00200057, 0.00205755, 0.12438798, 0.0350039, 0.10707188, 0.00202203, 0.0588131, 0.00196958, 0.00206304, 0.00210071, 0.00195527, 0.00196505, 0.12865281, 0.03324389, 0.10751748, 0.00192881, 0.06270051, 0.0019412, 0.00206161, 0.00201631, 0.00197077, 0.00196719, 0.11851501, 0.0335412, 0.09549284, 0.00189543, 0.06345654, 0.00205445, 0.00198746, 0.00206614, 0.00203276, 0.00200558, 0.13306785, 0.031389, 0.09617877, 0.00192785, 0.05974865, 0.00193191, 0.00193405, 0.00212646, 0.00208211, 0.00203991, 0.13511562, 0.0304594, 0.10126495, 0.00198245, 0.06773019, 0.00188804, 0.00200891, 0.00209355, 0.00216889, 0.00203133, 0.13160563, 0.03324699, 0.08537006, 0.00199056, 0.06871319, 0.00183272, 0.00199389, 0.00219846, 0.00210476, 0.002033, 0.12883997, 0.03278637, 0.10213256, 0.00190997, 0.06907701, 0.00196505, 0.00189543, 0.00203609, 0.00196671, 0.00207067, 0.12446189, 0.03413558, 0.09468222, 0.00192738, 0.06509805, 0.00220466, 0.00202227, 0.00201249, 0.00199294, 0.00193501, 0.13129306, 0.03037405, 0.09303951, 0.00201893, 0.06349874, 0.00277781, 0.00197172, 0.00225973, 0.00195479, 0.0020957, 0.12780452, 0.0305512, 0.09060717, 0.00265622, 0.06727171, 0.00199819, 0.00201678, 0.00205994, 0.00206804, 0.0020411, 0.12281919, 0.03157282, 0.09610724, 0.00187564, 0.06919527, 0.00231957, 0.00194979, 0.00202179, 0.00200129, 0.00203109, 0.1259768, 0.03354979, 0.10020304, 0.00199389, 0.06033134, 0.00219917, 0.00219917, 0.0021255, 0.00203156, 0.00215602, 0.12083697, 0.02740216, 0.0888679, 0.00187492, 0.06669712, 0.00194907, 0.00204873, 0.00206065, 0.00194645, 0.00198436, 0.12107801, 0.03700423, 0.09250355, 0.00196314, 0.06020808, 0.00196838, 0.00212526, 0.00215673, 0.00200891, 0.00193262, 0.12489915, 0.0320611, 0.09533501, 0.00191522, 0.06554961, 0.00198555, 0.00201249, 0.00210571, 0.00209785, 0.00205302, 0.1318984, 0.03339934, 0.10465932, 0.00187707, 0.05355215, 0.00200343, 0.00216055, 0.00204349, 0.00207305, 0.00197864, 0.12497306, 0.03529429, 0.09504151, 0.00189996, 0.06069684, 0.00191903, 0.00198555, 0.00199008, 0.00203919, 0.00202608, 0.12467456, 0.03005862, 0.09427476, 0.00190616, 0.06278515, 0.00195765, 0.00197959, 0.00208402, 0.00208068, 0.00207925, 0.12335038, 0.03136706, 0.09919071, 0.00196838, 0.0616982, 0.00194669, 0.00219965, 0.00206757, 0.0020206, 0.00199819, 0.12248588, 0.03042579, 0.09100866, 0.00186133, 0.06587553, 0.00197029, 0.00201488, 0.0020299, 0.00207186, 0.00199461, 0.12549305, 0.03181362, 0.09423637, 0.00183916, 0.06417871, 0.00199986, 0.00196886, 0.00196552, 0.00195956, 0.00192952, 0.11075449, 0.03224397, 0.09273243, 0.00200415, 0.06513691, 0.00186372, 0.00197816, 0.00195909, 0.00192618, 0.00202918, 0.11159253, 0.03377128, 0.08992624, 0.00224233, 0.06518936, 0.001899, 0.00194883, 0.00200176, 0.00188494, 0.00204992, 0.10851312, 0.03179598, 0.09129477, 0.00242805, 0.0754528, 0.00196624, 0.00198507, 0.00204062, 0.00195742, 0.00196099, 0.12793684, 0.03274345, 0.09250331, 0.00194597, 0.06700039, 0.00193071, 0.00186872, 0.00190568, 0.00198007, 0.00199342, 0.11618471, 0.03161407, 0.10525537, 0.00203204, 0.06226444, 0.00183153, 0.00276947, 0.00210786, 0.00193405, 0.0019896, 0.11430502, 0.03147507, 0.10392022, 0.00190091, 0.06455302, 0.00182056, 0.00187922, 0.00197315, 0.00189042, 0.00207615, 0.12533283, 0.03288865, 0.08963108, 0.00197601, 0.06132984, 0.00184774, 0.00222349, 0.00214434, 0.00192308, 0.00203443, 0.12382221, 0.03634739, 0.10105991, 0.00187206, 0.06379485, 0.00197268, 0.00194788, 0.00191998, 0.00203204, 0.00195336, 0.12129331, 0.03108001, 0.09610581, 0.00197339, 0.06170416, 0.00202823, 0.00195909, 0.00195813, 0.00188923, 0.00207186, 0.12810922, 0.03404593, 0.08778358, 0.00201702, 0.06465006, 0.00200486, 0.00217962, 0.00191617, 0.00206828, 0.0021081, 0.12212396, 0.03195238, 0.09062314, 0.00192451, 0.06155896, 0.00199509, 0.00197244, 0.0019381, 0.00190687, 0.00204396, 0.12243652, 0.03270078, 0.10088348, 0.00195742, 0.06257415, 0.00207615, 0.0024569, 0.00272202, 0.00185251, 0.00200462, 0.11363673, 0.03408885, 0.0962894, 0.00200582, 0.06510806, 0.00191975, 0.00191545, 0.00198507, 0.00180602, 0.00200129, 0.12553644, 0.03332615, 0.09494352, 0.0018096, 0.06218243, 0.00192285, 0.00200629, 0.00188518, 0.00181365, 0.00193191, 0.13264346, 0.03438807, 0.09687805, 0.00196671, 0.06515694, 0.00192904, 0.00187874, 0.0019505, 0.00190139, 0.00200987, 0.12820816, 0.03455138, 0.10553265, 0.00192285, 0.05829406, 0.00188112, 0.00192094, 0.00191736, 0.00185013, 0.0019505, 0.12898231, 0.03460813, 0.09554291, 0.00192761, 0.06150246, 0.00189948, 0.00255871, 0.00189948, 0.00188184, 0.00183105, 0.11423349, 0.033324, 0.07136035, 0.00175929, 0.03881168, 0.00175261, 0.00178576, 0.00183392, 0.00180531, 0.00182509, 0.02880025, 0.01146603, 0.01812148, 0.00172591, 0.00921631, 0.001719, 0.00178003, ] ), "_count_history": array( [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ] ), }, }, "val/time": { "type": "HistoryBuffer", "repr": "", "dict": { "max_length": 1000000, "_log_history": array( [ 1.65406394, 0.15298462, 0.17894912, 0.15018582, 0.22374821, 0.15166163, 0.15954208, 0.15080047, 0.15198636, 0.22284365, 0.28916621, 0.15455174, 0.23404741, 0.15312123, 0.22179961, 0.15131712, 0.15090847, 0.15097022, 0.15142655, 0.18237424, 0.278651, 0.15118885, 0.2310133, 0.15293741, 0.20766687, 0.1513505, 0.15198827, 0.15201473, 0.15094972, 0.18070602, 0.2757163, 0.1521523, 0.24353909, 0.15342617, 0.20844221, 0.15075731, 0.15504789, 0.15139151, 0.15126348, 0.18140316, 0.27431941, 0.1510632, 0.23471475, 0.15296364, 0.2102108, 0.15339732, 0.15122175, 0.15078998, 0.1512742, 0.18330073, 0.28230453, 0.1511488, 0.23654151, 0.15293336, 0.22087479, 0.15043354, 0.15128326, 0.15966225, 0.1516273, 0.19366169, 0.2691021, 0.15201211, 0.23481631, 0.15412378, 0.21785307, 0.15421963, 0.15097499, 0.15107679, 0.15117836, 0.18477798, 0.26537251, 0.1508081, 0.23176098, 0.15247321, 0.22037435, 0.1507113, 0.15216565, 0.15131617, 0.15447736, 0.18194866, 0.26685667, 0.15121841, 0.23173475, 0.1526587, 0.22157264, 0.15116596, 0.15043497, 0.15114617, 0.15139985, 0.18373013, 0.26835203, 0.15167475, 0.24085665, 0.15404701, 0.22612619, 0.15076447, 0.15161371, 0.15134358, 0.15247273, 0.19019532, 0.27151537, 0.15527844, 0.25115967, 0.15217423, 0.21433973, 0.15038252, 0.15071082, 0.15141678, 0.15542531, 0.18890262, 0.28155208, 0.15512753, 0.25917125, 0.15113997, 0.21753812, 0.15213251, 0.15209103, 0.15171838, 0.15552092, 0.18631673, 0.27726173, 0.15395904, 0.25066471, 0.15300345, 0.21681333, 0.15196347, 0.15147686, 0.15122032, 0.15130711, 0.18454647, 0.27299547, 0.15159392, 0.25043583, 0.15172911, 0.21349382, 0.15254903, 0.15059948, 0.1552887, 0.1511786, 0.18474436, 0.27429795, 0.15131807, 0.2409811, 0.15147424, 0.21532559, 0.15180206, 0.15175676, 0.15445137, 0.1510222, 0.18014932, 0.2804997, 0.15157366, 0.248492, 0.15234756, 0.2142055, 0.15094733, 0.15122485, 0.15394258, 0.15112066, 0.18107677, 0.2796061, 0.15122938, 0.46642852, 0.15216899, 0.21202517, 0.15058875, 0.15187073, 0.15125513, 0.15113378, 0.18095326, 0.28503752, 0.1516583, 0.24301147, 0.15330172, 0.21139765, 0.15119314, 0.15105844, 0.15203452, 0.1515913, 0.18179727, 0.27704024, 0.15232158, 0.24491334, 0.15231514, 0.20334435, 0.15142679, 0.15349436, 0.15150857, 0.15171456, 0.18259025, 0.26412559, 0.15157771, 0.24314523, 0.15606689, 0.21066093, 0.15211177, 0.15127277, 0.15137649, 0.15181971, 0.18088555, 0.25608444, 0.15174985, 0.23738551, 0.15628839, 0.21231985, 0.15419388, 0.15209222, 0.15158916, 0.15152359, 0.18029904, 0.25734138, 0.15091228, 0.24439335, 0.15147138, 0.2118845, 0.1510644, 0.15118432, 0.15147042, 0.1511364, 0.17956734, 0.27740645, 0.15143323, 0.26808977, 0.15123224, 0.21054626, 0.15639377, 0.15123415, 0.15141416, 0.15093732, 0.17854285, 0.28426957, 0.15158892, 0.23718071, 0.15145755, 0.20892978, 0.15132976, 0.15171003, 0.15130138, 0.15083957, 0.18365645, 0.27966094, 0.15104485, 0.2414012, 0.15152049, 0.21208596, 0.15051293, 0.15526509, 0.15317774, 0.15130234, 0.17993975, 0.29087186, 0.1509459, 0.24138284, 0.15120316, 0.21434307, 0.15073013, 0.15498924, 0.15272427, 0.15144205, 0.17483306, 0.27662992, 0.15015936, 0.23734879, 0.15128469, 0.20650983, 0.15039992, 0.15097833, 0.15092993, 0.15117741, 0.18117476, 0.27887893, 0.15064216, 0.23786926, 0.15121078, 0.20588326, 0.15097904, 0.1513629, 0.15154886, 0.1506207, 0.18041062, 0.25657773, 0.15113211, 0.24821639, 0.15099883, 0.21447539, 0.15191603, 0.15161705, 0.15471768, 0.15698552, 0.18663836, 0.27444339, 0.15157247, 0.24130321, 0.15145087, 0.21351552, 0.15097141, 0.15106058, 0.1511209, 0.15135407, 0.17344069, 0.27158403, 0.15041852, 0.2506814, 0.15144944, 0.2096808, 0.15113735, 0.15230107, 0.15204477, 0.15164137, 0.17369771, 0.26364899, 0.15174532, 0.25010729, 0.1515069, 0.22025156, 0.15155387, 0.15541553, 0.15160656, 0.15082812, 0.17333603, 0.27140045, 0.15121174, 0.24581599, 0.15081096, 0.22350097, 0.15080667, 0.15194535, 0.15165877, 0.15135169, 0.18339968, 0.26521921, 0.15074944, 0.24364305, 0.15102291, 0.21625495, 0.15901089, 0.15654993, 0.15077066, 0.15061378, 0.17326975, 0.27540326, 0.15712667, 0.24755025, 0.15116882, 0.21688771, 0.15377545, 0.15123129, 0.15128827, 0.15102434, 0.18013334, 0.27898765, 0.15063453, 0.24524355, 0.15084624, 0.20908117, 0.1552496, 0.15088058, 0.15088129, 0.15085673, 0.18244839, 0.27929926, 0.15011239, 0.24641919, 0.15030217, 0.21533608, 0.15028596, 0.15036321, 0.1502037, 0.15008283, 0.18520594, 0.28000855, 0.1506722, 0.24494195, 0.15035725, 0.22073317, 0.15124774, 0.15011168, 0.14996409, 0.14979935, 0.18269563, 0.28798628, 0.14966273, 0.23815703, 0.14943767, 0.22142029, 0.15150976, 0.15046763, 0.14901733, 0.1480968, 0.18132901, 0.25504231, 0.1476686, 0.22150493, 0.1476748, 0.2110939, 0.15118456, 0.14767361, 0.14787865, 0.14778352, 0.15752316, 0.17671108, 0.14755011, 0.16656446, 0.14807677, 0.16403627, 0.14806724, 0.09975243, 0.44508839, 0.15288424, 0.23843813, 0.1510601, 0.20852637, 0.15200019, 0.16354513, 0.15745807, 0.15224552, 0.15745854, 0.27303839, 0.18377995, 0.26093411, 0.15142822, 0.21346569, 0.15252662, 0.15167689, 0.15092826, 0.15170336, 0.15112782, 0.27685118, 0.18158865, 0.255126, 0.15158033, 0.21126032, 0.15210176, 0.15169191, 0.15131617, 0.15609884, 0.15483546, 0.27338123, 0.18406892, 0.24548411, 0.15210652, 0.21108794, 0.15108371, 0.15315914, 0.15159202, 0.15166831, 0.1512661, 0.28233504, 0.18357396, 0.2458725, 0.15187907, 0.20883393, 0.15201783, 0.15153217, 0.16271973, 0.15256858, 0.15110898, 0.28487349, 0.1805985, 0.25103331, 0.15117788, 0.2168498, 0.15116501, 0.15092468, 0.15183687, 0.15061498, 0.15118289, 0.28122663, 0.18164968, 0.23437095, 0.15083432, 0.21916223, 0.15102172, 0.15119004, 0.1518712, 0.15151262, 0.15095234, 0.27752686, 0.1809175, 0.25124693, 0.15063119, 0.21834826, 0.15113044, 0.15104556, 0.15354371, 0.15122652, 0.15244937, 0.27222872, 0.18408203, 0.2432785, 0.15141368, 0.21785283, 0.1524303, 0.1511507, 0.15109634, 0.15276551, 0.15146255, 0.28004694, 0.17940164, 0.2444489, 0.15130901, 0.21465993, 0.15557885, 0.15166283, 0.15258527, 0.15230632, 0.15139961, 0.2771616, 0.17948246, 0.24317789, 0.15401196, 0.216506, 0.15141082, 0.15150046, 0.15222645, 0.15634608, 0.15202212, 0.28024244, 0.1816895, 0.24594522, 0.15125155, 0.21732402, 0.15183449, 0.15172958, 0.15175176, 0.15202665, 0.15121317, 0.27476239, 0.18291736, 0.24987841, 0.15125704, 0.20960665, 0.15138626, 0.15252686, 0.1555233, 0.15131831, 0.15178275, 0.27050304, 0.17763543, 0.23819733, 0.15150595, 0.21603632, 0.15087819, 0.15079355, 0.15487337, 0.15133238, 0.15216923, 0.26993918, 0.18769717, 0.24265265, 0.15163851, 0.2101388, 0.15094233, 0.15157604, 0.15483093, 0.15185118, 0.15155983, 0.27424836, 0.18232298, 0.24571896, 0.38834643, 0.21389675, 0.15166497, 0.15214324, 0.15173435, 0.15260029, 0.15236068, 0.28081083, 0.18310452, 0.2534318, 0.15152407, 0.20345783, 0.15170169, 0.15196848, 0.15173674, 0.15177226, 0.15202451, 0.27415466, 0.18596244, 0.24382854, 0.1512866, 0.21073484, 0.15115094, 0.15743256, 0.15195489, 0.15218091, 0.15368652, 0.27371907, 0.18049145, 0.24297762, 0.15146804, 0.21175671, 0.15188217, 0.15226889, 0.1526382, 0.15172601, 0.15191698, 0.27197218, 0.18120813, 0.24836731, 0.15153933, 0.21131134, 0.15169716, 0.15233612, 0.15155864, 0.15163803, 0.15105987, 0.27272749, 0.17970967, 0.25169778, 0.15117884, 0.21937585, 0.15204144, 0.15360713, 0.15614724, 0.15280581, 0.15137792, 0.27477264, 0.18097162, 0.24454117, 0.15139294, 0.2136302, 0.15137339, 0.15393305, 0.15038466, 0.15599847, 0.1524694, 0.25901151, 0.18084955, 0.24290013, 0.15153575, 0.21412325, 0.15099192, 0.15122437, 0.1512928, 0.15183783, 0.15443921, 0.26033497, 0.18333149, 0.24179411, 0.15125799, 0.21388555, 0.15017724, 0.15079761, 0.1506989, 0.15059495, 0.15112972, 0.25789404, 0.18638873, 0.23979187, 0.15221715, 0.22553778, 0.15146613, 0.15202475, 0.15090346, 0.1517067, 0.15323043, 0.27741551, 0.18278193, 0.24133468, 0.1513319, 0.21539664, 0.1510818, 0.15219641, 0.15157008, 0.15176916, 0.15232301, 0.2679069, 0.1806252, 0.25459194, 0.15135932, 0.21057391, 0.154814, 0.1524179, 0.15145111, 0.15137815, 0.15177226, 0.26327848, 0.18185735, 0.25245214, 0.15102482, 0.21358204, 0.15106606, 0.15183997, 0.15110278, 0.15154743, 0.15196586, 0.27453279, 0.18155241, 0.23915434, 0.15191293, 0.21197867, 0.15130186, 0.1514709, 0.15158129, 0.15107536, 0.15132809, 0.27201152, 0.18539214, 0.24967122, 0.15087104, 0.2136848, 0.15103579, 0.15161872, 0.15129352, 0.15034366, 0.15166783, 0.27110934, 0.17980909, 0.24529719, 0.15109539, 0.21156764, 0.15158463, 0.15083289, 0.15109372, 0.15087509, 0.15174174, 0.27720404, 0.18311, 0.23632789, 0.15131545, 0.21322799, 0.15115571, 0.15183043, 0.15112925, 0.15126991, 0.1511066, 0.27183533, 0.18037391, 0.23927259, 0.15071797, 0.21249485, 0.15175343, 0.15086174, 0.15168548, 0.15132427, 0.15142345, 0.27188373, 0.18182278, 0.25230718, 0.15125322, 0.2148273, 0.15132666, 0.16211724, 0.15701318, 0.1513865, 0.15691566, 0.26292276, 0.18278098, 0.24541521, 0.15128112, 0.21521091, 0.1512444, 0.15128469, 0.15067697, 0.15055132, 0.15177035, 0.27493215, 0.18144178, 0.2435379, 0.15032315, 0.21202159, 0.15055704, 0.15074873, 0.15045428, 0.15077996, 0.15072513, 0.28151894, 0.18270254, 0.24530745, 0.14996052, 0.2136085, 0.14999819, 0.15033722, 0.15060425, 0.15023375, 0.15216351, 0.27620125, 0.18192244, 0.25257564, 0.15022612, 0.20555592, 0.14922857, 0.15030766, 0.14935827, 0.14980483, 0.15017319, 0.27667689, 0.18184829, 0.24332285, 0.14951706, 0.20915508, 0.14967513, 0.15036774, 0.1489718, 0.14806247, 0.14812922, 0.26062417, 0.18043375, 0.21838474, 0.14785647, 0.18547034, 0.14820027, 0.14765334, 0.14797473, 0.14769721, 0.14817953, 0.17489719, 0.1576407, 0.16518283, 0.14774561, 0.15542912, 0.14802074, 0.09935832, ] ), "_count_history": array( [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ] ), }, }, "val/coco-wholebody/AP": { "type": "HistoryBuffer", "repr": "", "dict": { "max_length": 1000000, "_log_history": array([0.66521864, 0.66545075]), "_count_history": array([1, 1]), }, }, "val/coco-wholebody/AP ": { "5": { "type": "HistoryBuffer", "repr": "", "dict": { "max_length": 1000000, "_log_history": array([0.87611426, 0.87716453]), "_count_history": array([1, 1]), }, }, "75": { "type": "HistoryBuffer", "repr": "", "dict": { "max_length": 1000000, "_log_history": array([0.73454072, 0.73420365]), "_count_history": array([1, 1]), }, }, }, "val/coco-wholebody/AP (M)": { "type": "HistoryBuffer", "repr": "", "dict": { "max_length": 1000000, "_log_history": array([0.63646269, 0.63586262]), "_count_history": array([1, 1]), }, }, "val/coco-wholebody/AP (L)": { "type": "HistoryBuffer", "repr": "", "dict": { "max_length": 1000000, "_log_history": array([0.7229412, 0.72406496]), "_count_history": array([1, 1]), }, }, "val/coco-wholebody/AR": { "type": "HistoryBuffer", "repr": "", "dict": { "max_length": 1000000, "_log_history": array([0.74198678, 0.74269521]), "_count_history": array([1, 1]), }, }, "val/coco-wholebody/AR ": { "5": { "type": "HistoryBuffer", "repr": "", "dict": { "max_length": 1000000, "_log_history": array([0.92096977, 0.92191436]), "_count_history": array([1, 1]), }, }, "75": { "type": "HistoryBuffer", "repr": "", "dict": { "max_length": 1000000, "_log_history": array([0.80462846, 0.80494332]), "_count_history": array([1, 1]), }, }, }, "val/coco-wholebody/AR (M)": { "type": "HistoryBuffer", "repr": "", "dict": { "max_length": 1000000, "_log_history": array([0.70849495, 0.70854958]), "_count_history": array([1, 1]), }, }, "val/coco-wholebody/AR (L)": { "type": "HistoryBuffer", "repr": "", "dict": { "max_length": 1000000, "_log_history": array([0.78978075, 0.79137867]), "_count_history": array([1, 1]), }, }, }, "runtime_info": { "cfg": "default_scope = 'mmpose'\ndefault_hooks = dict(\n timer=dict(type='IterTimerHook'),\n logger=dict(type='LoggerHook', interval=50),\n param_scheduler=dict(type='ParamSchedulerHook'),\n checkpoint=dict(\n type='CheckpointHook',\n interval=10,\n save_best='coco-wholebody/AP',\n rule='greater',\n max_keep_ckpts=1),\n sampler_seed=dict(type='DistSamplerSeedHook'),\n visualization=dict(type='PoseVisualizationHook', enable=False))\ncustom_hooks = [\n dict(\n type='EMAHook',\n ema_type='ExpMomentumEMA',\n momentum=0.0002,\n update_buffers=True,\n priority=49),\n dict(\n type='mmdet.PipelineSwitchHook',\n switch_epoch=240,\n switch_pipeline=[\n dict(type='LoadImage', backend_args=dict(backend='local')),\n dict(type='GetBBoxCenterScale'),\n dict(type='RandomFlip', direction='horizontal'),\n dict(type='RandomHalfBody'),\n dict(\n type='RandomBBoxTransform',\n shift_factor=0.0,\n scale_factor=[0.75, 1.25],\n rotate_factor=60),\n dict(type='TopdownAffine', input_size=(288, 384)),\n dict(type='mmdet.YOLOXHSVRandomAug'),\n dict(\n type='Albumentation',\n transforms=[\n dict(type='Blur', p=0.1),\n dict(type='MedianBlur', p=0.1),\n dict(\n type='CoarseDropout',\n max_holes=1,\n max_height=0.4,\n max_width=0.4,\n min_holes=1,\n min_height=0.2,\n min_width=0.2,\n p=0.5)\n ]),\n dict(\n type='GenerateTarget',\n encoder=dict(\n type='SimCCLabel',\n input_size=(288, 384),\n sigma=(6.0, 6.93),\n simcc_split_ratio=2.0,\n normalize=False,\n use_dark=False)),\n dict(type='PackPoseInputs')\n ])\n]\nenv_cfg = dict(\n cudnn_benchmark=False,\n mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),\n dist_cfg=dict(backend='nccl'))\nvis_backends = [dict(type='LocalVisBackend')]\nvisualizer = dict(\n type='PoseLocalVisualizer',\n vis_backends=[dict(type='LocalVisBackend')],\n name='visualizer')\nlog_processor = dict(\n type='LogProcessor', window_size=50, by_epoch=True, num_digits=6)\nlog_level = 'INFO'\nload_from = None\nresume = False\nbackend_args = dict(backend='local')\ntrain_cfg = dict(by_epoch=True, max_epochs=60, val_interval=10)\nval_cfg = dict()\ntest_cfg = dict()\nmax_epochs = 270\nstage2_num_epochs = 30\nbase_lr = 0.004\nrandomness = dict(seed=21)\noptim_wrapper = dict(\n type='OptimWrapper',\n optimizer=dict(type='AdamW', lr=0.004, weight_decay=0.05),\n paramwise_cfg=dict(\n norm_decay_mult=0, bias_decay_mult=0, bypass_duplicate=True),\n clip_grad=dict(max_norm=1.0, norm_type=2))\nparam_scheduler = [\n dict(\n type='LinearLR', start_factor=1e-05, by_epoch=False, begin=0,\n end=1000),\n dict(\n type='CosineAnnealingLR',\n eta_min=0.0002,\n begin=135,\n end=270,\n T_max=135,\n by_epoch=True,\n convert_to_iter_based=True)\n]\nauto_scale_lr = dict(base_batch_size=512)\ncodec = dict(\n type='SimCCLabel',\n input_size=(288, 384),\n sigma=(6.0, 6.93),\n simcc_split_ratio=2.0,\n normalize=False,\n use_dark=False)\nmodel = dict(\n type='PoseEstimatorDistiller',\n two_dis=True,\n teacher_pretrained=\n '/home/yangzhendong/Projects/mmpose/work_dirs/rtmpose_x_dis_l__coco-ubody-384x288/rtm-l_66.4.pth',\n teacher_cfg=\n 'configs/wholebody_2d_keypoint/rtmpose/ubody/rtmpose-l_8xb32-270e_coco-ubody-wholebody-384x288.py',\n student_cfg=\n 'configs/wholebody_2d_keypoint/rtmpose/ubody/rtmpose-l_8xb32-270e_coco-ubody-wholebody-384x288.py',\n distill_cfg=[\n dict(methods=[\n dict(\n type='MGD_2Loss',\n name='loss_mgd',\n use_this=True,\n student_channels=1024,\n teacher_channels=1024,\n alpha_mgd=7e-05,\n lambda_mgd=0.15)\n ]),\n dict(methods=[\n dict(type='NKDLoss', name='loss_nkd', use_this=True, weight=1)\n ])\n ],\n data_preprocessor=dict(\n type='PoseDataPreprocessor',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n bgr_to_rgb=True),\n train_cfg=dict(max_epochs=60, val_interval=10))\ndataset_type = 'CocoWholeBodyDataset'\ndata_mode = 'topdown'\ndata_root = '/data/'\ntrain_pipeline = [\n dict(type='LoadImage', backend_args=dict(backend='local')),\n dict(type='GetBBoxCenterScale'),\n dict(type='RandomFlip', direction='horizontal'),\n dict(type='RandomHalfBody'),\n dict(\n type='RandomBBoxTransform', scale_factor=[0.6, 1.4], rotate_factor=80),\n dict(type='TopdownAffine', input_size=(288, 384)),\n dict(type='mmdet.YOLOXHSVRandomAug'),\n dict(\n type='Albumentation',\n transforms=[\n dict(type='Blur', p=0.1),\n dict(type='MedianBlur', p=0.1),\n dict(\n type='CoarseDropout',\n max_holes=1,\n max_height=0.4,\n max_width=0.4,\n min_holes=1,\n min_height=0.2,\n min_width=0.2,\n p=1.0)\n ]),\n dict(\n type='GenerateTarget',\n encoder=dict(\n type='SimCCLabel',\n input_size=(288, 384),\n sigma=(6.0, 6.93),\n simcc_split_ratio=2.0,\n normalize=False,\n use_dark=False)),\n dict(type='PackPoseInputs')\n]\nval_pipeline = [\n dict(type='LoadImage', backend_args=dict(backend='local')),\n dict(type='GetBBoxCenterScale'),\n dict(type='TopdownAffine', input_size=(288, 384)),\n dict(type='PackPoseInputs')\n]\ntrain_pipeline_stage2 = [\n dict(type='LoadImage', backend_args=dict(backend='local')),\n dict(type='GetBBoxCenterScale'),\n dict(type='RandomFlip', direction='horizontal'),\n dict(type='RandomHalfBody'),\n dict(\n type='RandomBBoxTransform',\n shift_factor=0.0,\n scale_factor=[0.75, 1.25],\n rotate_factor=60),\n dict(type='TopdownAffine', input_size=(288, 384)),\n dict(type='mmdet.YOLOXHSVRandomAug'),\n dict(\n type='Albumentation',\n transforms=[\n dict(type='Blur', p=0.1),\n dict(type='MedianBlur', p=0.1),\n dict(\n type='CoarseDropout',\n max_holes=1,\n max_height=0.4,\n max_width=0.4,\n min_holes=1,\n min_height=0.2,\n min_width=0.2,\n p=0.5)\n ]),\n dict(\n type='GenerateTarget',\n encoder=dict(\n type='SimCCLabel',\n input_size=(288, 384),\n sigma=(6.0, 6.93),\n simcc_split_ratio=2.0,\n normalize=False,\n use_dark=False)),\n dict(type='PackPoseInputs')\n]\ndatasets = [\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='coco/annotations/coco_wholebody_train_v1.0.json',\n data_prefix=dict(img='coco/train2017/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Magic_show/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Magic_show/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Entertainment/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Entertainment/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/ConductMusic/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/ConductMusic/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Online_class/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Online_class/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/TalkShow/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/TalkShow/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Speech/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Speech/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Fitness/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Fitness/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Interview/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Interview/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Olympic/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Olympic/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/TVShow/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/TVShow/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Singing/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Singing/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/SignLanguage/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/SignLanguage/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Movie/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Movie/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/LiveVlog/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/LiveVlog/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/VideoConference/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/VideoConference/'),\n pipeline=[])\n]\ndataset_coco = dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='coco/annotations/coco_wholebody_train_v1.0.json',\n data_prefix=dict(img='coco/train2017/'),\n pipeline=[])\nscene = [\n 'Magic_show', 'Entertainment', 'ConductMusic', 'Online_class', 'TalkShow',\n 'Speech', 'Fitness', 'Interview', 'Olympic', 'TVShow', 'Singing',\n 'SignLanguage', 'Movie', 'LiveVlog', 'VideoConference'\n]\ni = 14\ntrain_dataloader = dict(\n batch_size=32,\n num_workers=10,\n persistent_workers=True,\n sampler=dict(type='DefaultSampler', shuffle=True),\n dataset=dict(\n type='CombinedDataset',\n metainfo=dict(from_file='configs/_base_/datasets/coco_wholebody.py'),\n datasets=[\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='coco/annotations/coco_wholebody_train_v1.0.json',\n data_prefix=dict(img='coco/train2017/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file=\n 'UBody/annotations/Magic_show/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Magic_show/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file=\n 'UBody/annotations/Entertainment/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Entertainment/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file=\n 'UBody/annotations/ConductMusic/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/ConductMusic/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file=\n 'UBody/annotations/Online_class/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Online_class/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/TalkShow/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/TalkShow/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Speech/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Speech/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Fitness/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Fitness/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Interview/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Interview/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Olympic/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Olympic/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/TVShow/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/TVShow/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Singing/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Singing/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file=\n 'UBody/annotations/SignLanguage/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/SignLanguage/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/Movie/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/Movie/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='UBody/annotations/LiveVlog/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/LiveVlog/'),\n pipeline=[]),\n dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file=\n 'UBody/annotations/VideoConference/keypoint_annotation.json',\n data_prefix=dict(img='UBody/images/VideoConference/'),\n pipeline=[])\n ],\n pipeline=[\n dict(type='LoadImage', backend_args=dict(backend='local')),\n dict(type='GetBBoxCenterScale'),\n dict(type='RandomFlip', direction='horizontal'),\n dict(type='RandomHalfBody'),\n dict(\n type='RandomBBoxTransform',\n scale_factor=[0.6, 1.4],\n rotate_factor=80),\n dict(type='TopdownAffine', input_size=(288, 384)),\n dict(type='mmdet.YOLOXHSVRandomAug'),\n dict(\n type='Albumentation',\n transforms=[\n dict(type='Blur', p=0.1),\n dict(type='MedianBlur', p=0.1),\n dict(\n type='CoarseDropout',\n max_holes=1,\n max_height=0.4,\n max_width=0.4,\n min_holes=1,\n min_height=0.2,\n min_width=0.2,\n p=1.0)\n ]),\n dict(\n type='GenerateTarget',\n encoder=dict(\n type='SimCCLabel',\n input_size=(288, 384),\n sigma=(6.0, 6.93),\n simcc_split_ratio=2.0,\n normalize=False,\n use_dark=False)),\n dict(type='PackPoseInputs')\n ],\n test_mode=False))\nval_dataloader = dict(\n batch_size=32,\n num_workers=10,\n persistent_workers=True,\n drop_last=False,\n sampler=dict(type='DefaultSampler', shuffle=False, round_up=False),\n dataset=dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='coco/annotations/coco_wholebody_val_v1.0.json',\n bbox_file=\n '/data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json',\n data_prefix=dict(img='coco/val2017/'),\n test_mode=True,\n pipeline=[\n dict(type='LoadImage', backend_args=dict(backend='local')),\n dict(type='GetBBoxCenterScale'),\n dict(type='TopdownAffine', input_size=(288, 384)),\n dict(type='PackPoseInputs')\n ]))\ntest_dataloader = dict(\n batch_size=32,\n num_workers=10,\n persistent_workers=True,\n drop_last=False,\n sampler=dict(type='DefaultSampler', shuffle=False, round_up=False),\n dataset=dict(\n type='CocoWholeBodyDataset',\n data_root='/data/',\n data_mode='topdown',\n ann_file='coco/annotations/coco_wholebody_val_v1.0.json',\n bbox_file=\n '/data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json',\n data_prefix=dict(img='coco/val2017/'),\n test_mode=True,\n pipeline=[\n dict(type='LoadImage', backend_args=dict(backend='local')),\n dict(type='GetBBoxCenterScale'),\n dict(type='TopdownAffine', input_size=(288, 384)),\n dict(type='PackPoseInputs')\n ]))\nval_evaluator = dict(\n type='CocoWholeBodyMetric',\n ann_file='/data/coco/annotations/coco_wholebody_val_v1.0.json')\ntest_evaluator = dict(\n type='CocoWholeBodyMetric',\n ann_file='/data/coco/annotations/coco_wholebody_val_v1.0.json')\nfind_unused_parameters = True\nmgd = True\nnkd = True\nlauncher = 'pytorch'\nwork_dir = './work_dirs/rtmpose_l-ll__coco-ubody-384x288'\n", "seed": 21, "experiment_name": "rtmpose_l-ll__coco-ubody-384x288_20230706_095637", "mmengine_version": "0.7.2", "epoch": 19, "iter": 19139, "max_epochs": 60, "max_iters": 57420, "eta": {"type": "float64", "repr": "0.0", "dict": {}}, "last_ckpt": "/home/yangzhendong/Projects/mmpose/work_dirs/rtmpose_l-ll__coco-ubody-384x288/epoch_20.pth", "best_score": {"type": "float64", "repr": "0.665450746403108", "dict": {}}, "best_ckpt": "/home/yangzhendong/Projects/mmpose/work_dirs/rtmpose_l-ll__coco-ubody-384x288/best_coco-wholebody_AP_epoch_20.pth", "dataset_meta": { "dataset_name": "coco_wholebody", "num_keypoints": 133, "keypoint_colors": { "type": "ndarray", "repr": "array([[ 51, 153, 255],\n [ 51, 153, 255],\n [ 51, 153, 255],\n [ 51, 153, 255],\n [ 51, 153, 255],\n [ 0, 255, 0],\n [255, 128, 0],\n [ 0, 255, 0],\n [255, 128, 0],\n [ 0, 255, 0],\n [255, 128, 0],\n [ 0, 255, 0],\n [255, 128, 0],\n [ 0, 255, 0],\n [255, 128, 0],\n [ 0, 255, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 255, 255],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 153, 255],\n [255, 153, 255],\n [255, 153, 255],\n [255, 153, 255],\n [102, 178, 255],\n [102, 178, 255],\n [102, 178, 255],\n [102, 178, 255],\n [255, 51, 51],\n [255, 51, 51],\n [255, 51, 51],\n [255, 51, 51],\n [ 0, 255, 0],\n [ 0, 255, 0],\n [ 0, 255, 0],\n [ 0, 255, 0],\n [255, 255, 255],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 153, 255],\n [255, 153, 255],\n [255, 153, 255],\n [255, 153, 255],\n [102, 178, 255],\n [102, 178, 255],\n [102, 178, 255],\n [102, 178, 255],\n [255, 51, 51],\n [255, 51, 51],\n [255, 51, 51],\n [255, 51, 51],\n [ 0, 255, 0],\n [ 0, 255, 0],\n [ 0, 255, 0],\n [ 0, 255, 0]], dtype=uint8)", "dict": {}, }, "num_skeleton_links": 65, "skeleton_link_colors": { "type": "ndarray", "repr": "array([[ 0, 255, 0],\n [ 0, 255, 0],\n [255, 128, 0],\n [255, 128, 0],\n [ 51, 153, 255],\n [ 51, 153, 255],\n [ 51, 153, 255],\n [ 51, 153, 255],\n [ 0, 255, 0],\n [255, 128, 0],\n [ 0, 255, 0],\n [255, 128, 0],\n [ 51, 153, 255],\n [ 51, 153, 255],\n [ 51, 153, 255],\n [ 51, 153, 255],\n [ 51, 153, 255],\n [ 51, 153, 255],\n [ 51, 153, 255],\n [ 0, 255, 0],\n [ 0, 255, 0],\n [ 0, 255, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 153, 255],\n [255, 153, 255],\n [255, 153, 255],\n [255, 153, 255],\n [102, 178, 255],\n [102, 178, 255],\n [102, 178, 255],\n [102, 178, 255],\n [255, 51, 51],\n [255, 51, 51],\n [255, 51, 51],\n [255, 51, 51],\n [ 0, 255, 0],\n [ 0, 255, 0],\n [ 0, 255, 0],\n [ 0, 255, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 128, 0],\n [255, 153, 255],\n [255, 153, 255],\n [255, 153, 255],\n [255, 153, 255],\n [102, 178, 255],\n [102, 178, 255],\n [102, 178, 255],\n [102, 178, 255],\n [255, 51, 51],\n [255, 51, 51],\n [255, 51, 51],\n [255, 51, 51],\n [ 0, 255, 0],\n [ 0, 255, 0],\n [ 0, 255, 0],\n [ 0, 255, 0]], dtype=uint8)", "dict": {}, }, "dataset_keypoint_weights": { "type": "ndarray", "repr": "array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,\n 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,\n 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,\n 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,\n 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,\n 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,\n 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,\n 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],\n dtype=float32)", "dict": {}, }, "sigmas": { "type": "ndarray", "repr": "array([0.026, 0.025, 0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072,\n 0.062, 0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089, 0.068,\n 0.066, 0.066, 0.092, 0.094, 0.094, 0.042, 0.043, 0.044, 0.043,\n 0.04 , 0.035, 0.031, 0.025, 0.02 , 0.023, 0.029, 0.032, 0.037,\n 0.038, 0.043, 0.041, 0.045, 0.013, 0.012, 0.011, 0.011, 0.012,\n 0.012, 0.011, 0.011, 0.013, 0.015, 0.009, 0.007, 0.007, 0.007,\n 0.012, 0.009, 0.008, 0.016, 0.01 , 0.017, 0.011, 0.009, 0.011,\n 0.009, 0.007, 0.013, 0.008, 0.011, 0.012, 0.01 , 0.034, 0.008,\n 0.008, 0.009, 0.008, 0.008, 0.007, 0.01 , 0.008, 0.009, 0.009,\n 0.009, 0.007, 0.007, 0.008, 0.011, 0.008, 0.008, 0.008, 0.01 ,\n 0.008, 0.029, 0.022, 0.035, 0.037, 0.047, 0.026, 0.025, 0.024,\n 0.035, 0.018, 0.024, 0.022, 0.026, 0.017, 0.021, 0.021, 0.032,\n 0.02 , 0.019, 0.022, 0.031, 0.029, 0.022, 0.035, 0.037, 0.047,\n 0.026, 0.025, 0.024, 0.035, 0.018, 0.024, 0.022, 0.026, 0.017,\n 0.021, 0.021, 0.032, 0.02 , 0.019, 0.022, 0.031], dtype=float32)", "dict": {}, }, "keypoint_id2name": { "0": "nose", "1": "left_eye", "2": "right_eye", "3": "left_ear", "4": "right_ear", "5": "left_shoulder", "6": "right_shoulder", "7": "left_elbow", "8": "right_elbow", "9": "left_wrist", "10": "right_wrist", "11": "left_hip", "12": "right_hip", "13": "left_knee", "14": "right_knee", "15": "left_ankle", "16": "right_ankle", "17": "left_big_toe", "18": "left_small_toe", "19": "left_heel", "20": "right_big_toe", "21": "right_small_toe", "22": "right_heel", "23": "face-0", "24": "face-1", "25": "face-2", "26": "face-3", "27": "face-4", "28": "face-5", "29": "face-6", "30": "face-7", "31": "face-8", "32": "face-9", "33": "face-10", "34": "face-11", "35": "face-12", "36": "face-13", "37": "face-14", "38": "face-15", "39": "face-16", "40": "face-17", "41": "face-18", "42": "face-19", "43": "face-20", "44": "face-21", "45": "face-22", "46": "face-23", "47": "face-24", "48": "face-25", "49": "face-26", "50": "face-27", "51": "face-28", "52": "face-29", "53": "face-30", "54": "face-31", "55": "face-32", "56": "face-33", "57": "face-34", "58": "face-35", "59": "face-36", "60": "face-37", "61": "face-38", "62": "face-39", "63": "face-40", "64": "face-41", "65": "face-42", "66": "face-43", "67": "face-44", "68": "face-45", "69": "face-46", "70": "face-47", "71": "face-48", "72": "face-49", "73": "face-50", "74": "face-51", "75": "face-52", "76": "face-53", "77": "face-54", "78": "face-55", "79": "face-56", "80": "face-57", "81": "face-58", "82": "face-59", "83": "face-60", "84": "face-61", "85": "face-62", "86": "face-63", "87": "face-64", "88": "face-65", "89": "face-66", "90": "face-67", "91": "left_hand_root", "92": "left_thumb1", "93": "left_thumb2", "94": "left_thumb3", "95": "left_thumb4", "96": "left_forefinger1", "97": "left_forefinger2", "98": "left_forefinger3", "99": "left_forefinger4", "100": "left_middle_finger1", "101": "left_middle_finger2", "102": "left_middle_finger3", "103": "left_middle_finger4", "104": "left_ring_finger1", "105": "left_ring_finger2", "106": "left_ring_finger3", "107": "left_ring_finger4", "108": "left_pinky_finger1", "109": "left_pinky_finger2", "110": "left_pinky_finger3", "111": "left_pinky_finger4", "112": "right_hand_root", "113": "right_thumb1", "114": "right_thumb2", "115": "right_thumb3", "116": "right_thumb4", "117": "right_forefinger1", "118": "right_forefinger2", "119": "right_forefinger3", "120": "right_forefinger4", "121": "right_middle_finger1", "122": "right_middle_finger2", "123": "right_middle_finger3", "124": "right_middle_finger4", "125": "right_ring_finger1", "126": "right_ring_finger2", "127": "right_ring_finger3", "128": "right_ring_finger4", "129": "right_pinky_finger1", "130": "right_pinky_finger2", "131": "right_pinky_finger3", "132": "right_pinky_finger4", }, "keypoint_name2id": { "nose": 0, "left_eye": 1, "right_eye": 2, "left_ear": 3, "right_ear": 4, "left_shoulder": 5, "right_shoulder": 6, "left_elbow": 7, "right_elbow": 8, "left_wrist": 9, "right_wrist": 10, "left_hip": 11, "right_hip": 12, "left_knee": 13, "right_knee": 14, "left_ankle": 15, "right_ankle": 16, "left_big_toe": 17, "left_small_toe": 18, "left_heel": 19, "right_big_toe": 20, "right_small_toe": 21, "right_heel": 22, "face-0": 23, "face-1": 24, "face-2": 25, "face-3": 26, "face-4": 27, "face-5": 28, "face-6": 29, "face-7": 30, "face-8": 31, "face-9": 32, "face-10": 33, "face-11": 34, "face-12": 35, "face-13": 36, "face-14": 37, "face-15": 38, "face-16": 39, "face-17": 40, "face-18": 41, "face-19": 42, "face-20": 43, "face-21": 44, "face-22": 45, "face-23": 46, "face-24": 47, "face-25": 48, "face-26": 49, "face-27": 50, "face-28": 51, "face-29": 52, "face-30": 53, "face-31": 54, "face-32": 55, "face-33": 56, "face-34": 57, "face-35": 58, "face-36": 59, "face-37": 60, "face-38": 61, "face-39": 62, "face-40": 63, "face-41": 64, "face-42": 65, "face-43": 66, "face-44": 67, "face-45": 68, "face-46": 69, "face-47": 70, "face-48": 71, "face-49": 72, "face-50": 73, "face-51": 74, "face-52": 75, "face-53": 76, "face-54": 77, "face-55": 78, "face-56": 79, "face-57": 80, "face-58": 81, "face-59": 82, "face-60": 83, "face-61": 84, "face-62": 85, "face-63": 86, "face-64": 87, "face-65": 88, "face-66": 89, "face-67": 90, "left_hand_root": 91, "left_thumb1": 92, "left_thumb2": 93, "left_thumb3": 94, "left_thumb4": 95, "left_forefinger1": 96, "left_forefinger2": 97, "left_forefinger3": 98, "left_forefinger4": 99, "left_middle_finger1": 100, "left_middle_finger2": 101, "left_middle_finger3": 102, "left_middle_finger4": 103, "left_ring_finger1": 104, "left_ring_finger2": 105, "left_ring_finger3": 106, "left_ring_finger4": 107, "left_pinky_finger1": 108, "left_pinky_finger2": 109, "left_pinky_finger3": 110, "left_pinky_finger4": 111, "right_hand_root": 112, "right_thumb1": 113, "right_thumb2": 114, "right_thumb3": 115, "right_thumb4": 116, "right_forefinger1": 117, "right_forefinger2": 118, "right_forefinger3": 119, "right_forefinger4": 120, "right_middle_finger1": 121, "right_middle_finger2": 122, "right_middle_finger3": 123, "right_middle_finger4": 124, "right_ring_finger1": 125, "right_ring_finger2": 126, "right_ring_finger3": 127, "right_ring_finger4": 128, "right_pinky_finger1": 129, "right_pinky_finger2": 130, "right_pinky_finger3": 131, "right_pinky_finger4": 132, }, "upper_body_ids": { "0": 0, "1": 1, "2": 2, "3": 3, "4": 4, "5": 5, "6": 6, "7": 7, "8": 8, "9": 9, "10": 10, }, "lower_body_ids": { "0": 11, "1": 12, "2": 13, "3": 14, "4": 15, "5": 16, "6": 17, "7": 18, "8": 19, "9": 20, "10": 21, "11": 22, }, "flip_indices": { "0": 0, "1": 2, "2": 1, "3": 4, "4": 3, "5": 6, "6": 5, "7": 8, "8": 7, "9": 10, "10": 9, "11": 12, "12": 11, "13": 14, "14": 13, "15": 16, "16": 15, "17": 20, "18": 21, "19": 22, "20": 17, "21": 18, "22": 19, "23": 39, "24": 38, "25": 37, "26": 36, "27": 35, "28": 34, "29": 33, "30": 32, "31": 31, "32": 30, "33": 29, "34": 28, "35": 27, "36": 26, "37": 25, "38": 24, "39": 23, "40": 49, "41": 48, "42": 47, "43": 46, "44": 45, "45": 44, "46": 43, "47": 42, "48": 41, "49": 40, "50": 50, "51": 51, "52": 52, "53": 53, "54": 58, "55": 57, "56": 56, "57": 55, "58": 54, "59": 68, "60": 67, "61": 66, "62": 65, "63": 70, "64": 69, "65": 62, "66": 61, "67": 60, "68": 59, "69": 64, "70": 63, "71": 77, "72": 76, "73": 75, "74": 74, "75": 73, "76": 72, "77": 71, "78": 82, "79": 81, "80": 80, "81": 79, "82": 78, "83": 87, "84": 86, "85": 85, "86": 84, "87": 83, "88": 90, "89": 89, "90": 88, "91": 112, "92": 113, "93": 114, "94": 115, "95": 116, "96": 117, "97": 118, "98": 119, "99": 120, "100": 121, "101": 122, "102": 123, "103": 124, "104": 125, "105": 126, "106": 127, "107": 128, "108": 129, "109": 130, "110": 131, "111": 132, "112": 91, "113": 92, "114": 93, "115": 94, "116": 95, "117": 96, "118": 97, "119": 98, "120": 99, "121": 100, "122": 101, "123": 102, "124": 103, "125": 104, "126": 105, "127": 106, "128": 107, "129": 108, "130": 109, "131": 110, "132": 111, }, "flip_pairs": { "0": (2, 1), "1": (1, 2), "2": (4, 3), "3": (3, 4), "4": (6, 5), "5": (5, 6), "6": (8, 7), "7": (7, 8), "8": (10, 9), "9": (9, 10), "10": (12, 11), "11": (11, 12), "12": (14, 13), "13": (13, 14), "14": (16, 15), "15": (15, 16), "16": (20, 17), "17": (21, 18), "18": (22, 19), "19": (17, 20), "20": (18, 21), "21": (19, 22), "22": (39, 23), "23": (38, 24), "24": (37, 25), "25": (36, 26), "26": (35, 27), "27": (34, 28), "28": (33, 29), "29": (32, 30), "30": (30, 32), "31": (29, 33), "32": (28, 34), "33": (27, 35), "34": (26, 36), "35": (25, 37), "36": (24, 38), "37": (23, 39), "38": (49, 40), "39": (48, 41), "40": (47, 42), "41": (46, 43), "42": (45, 44), "43": (44, 45), "44": (43, 46), "45": (42, 47), "46": (41, 48), "47": (40, 49), "48": (58, 54), "49": (57, 55), "50": (55, 57), "51": (54, 58), "52": (68, 59), "53": (67, 60), "54": (66, 61), "55": (65, 62), "56": (70, 63), "57": (69, 64), "58": (62, 65), "59": (61, 66), "60": (60, 67), "61": (59, 68), "62": (64, 69), "63": (63, 70), "64": (77, 71), "65": (76, 72), "66": (75, 73), "67": (73, 75), "68": (72, 76), "69": (71, 77), "70": (82, 78), "71": (81, 79), "72": (79, 81), "73": (78, 82), "74": (87, 83), "75": (86, 84), "76": (84, 86), "77": (83, 87), "78": (90, 88), "79": (88, 90), "80": (112, 91), "81": (113, 92), "82": (114, 93), "83": (115, 94), "84": (116, 95), "85": (117, 96), "86": (118, 97), "87": (119, 98), "88": (120, 99), "89": (121, 100), "90": (122, 101), "91": (123, 102), "92": (124, 103), "93": (125, 104), "94": (126, 105), "95": (127, 106), "96": (128, 107), "97": (129, 108), "98": (130, 109), "99": (131, 110), "100": (132, 111), "101": (91, 112), "102": (92, 113), "103": (93, 114), "104": (94, 115), "105": (95, 116), "106": (96, 117), "107": (97, 118), "108": (98, 119), "109": (99, 120), "110": (100, 121), "111": (101, 122), "112": (102, 123), "113": (103, 124), "114": (104, 125), "115": (105, 126), "116": (106, 127), "117": (107, 128), "118": (108, 129), "119": (109, 130), "120": (110, 131), "121": (111, 132), }, "skeleton_links": { "0": (15, 13), "1": (13, 11), "2": (16, 14), "3": (14, 12), "4": (11, 12), "5": (5, 11), "6": (6, 12), "7": (5, 6), "8": (5, 7), "9": (6, 8), "10": (7, 9), "11": (8, 10), "12": (1, 2), "13": (0, 1), "14": (0, 2), "15": (1, 3), "16": (2, 4), "17": (3, 5), "18": (4, 6), "19": (15, 17), "20": (15, 18), "21": (15, 19), "22": (16, 20), "23": (16, 21), "24": (16, 22), "25": (91, 92), "26": (92, 93), "27": (93, 94), "28": (94, 95), "29": (91, 96), "30": (96, 97), "31": (97, 98), "32": (98, 99), "33": (91, 100), "34": (100, 101), "35": (101, 102), "36": (102, 103), "37": (91, 104), "38": (104, 105), "39": (105, 106), "40": (106, 107), "41": (91, 108), "42": (108, 109), "43": (109, 110), "44": (110, 111), "45": (112, 113), "46": (113, 114), "47": (114, 115), "48": (115, 116), "49": (112, 117), "50": (117, 118), "51": (118, 119), "52": (119, 120), "53": (112, 121), "54": (121, 122), "55": (122, 123), "56": (123, 124), "57": (112, 125), "58": (125, 126), "59": (126, 127), "60": (127, 128), "61": (112, 129), "62": (129, 130), "63": (130, 131), "64": (131, 132), }, }, }, "resumed_keys": { "cfg": True, "seed": True, "experiment_name": True, "mmengine_version": True, "epoch": True, "iter": True, "max_epochs": True, "max_iters": True, "dataset_meta": True, "train/lr": True, "train/data_time": True, "train/grad_norm": True, "train/loss": True, "train/loss_mgd": True, "train/loss_nkd": True, "train/time": True, "eta": True, "last_ckpt": True, "val/data_time": True, "val/time": True, "val/coco-wholebody/AP": True, "val/coco-wholebody/AP ": {"5": True, "75": True}, "val/coco-wholebody/AP (M)": True, "val/coco-wholebody/AP (L)": True, "val/coco-wholebody/AR": True, "val/coco-wholebody/AR ": {"5": True, "75": True}, "val/coco-wholebody/AR (M)": True, "val/coco-wholebody/AR (L)": True, "best_score": True, "best_ckpt": True, }, }, }