banghua commited on
Commit
a48c027
·
1 Parent(s): a074a80

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +52 -175
README.md CHANGED
@@ -1,5 +1,5 @@
1
  ---
2
- license: cc-by-nc-3.0
3
  datasets:
4
  - berkeley-nest/Nectar
5
  language:
@@ -10,200 +10,77 @@ tags:
10
  - RLHF
11
  - RLAIF
12
  ---
13
-
14
- # Model Card for Starling-LM-7B-alpha
15
 
16
  <!-- Provide a quick summary of what the model is/does. -->
17
 
18
- This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
19
-
20
- ## Model Details
21
-
22
- ### Model Description
23
-
24
- <!-- Provide a longer summary of what this model is. -->
25
-
26
-
27
-
28
- - **Developed by:** [More Information Needed]
29
- - **Funded by [optional]:** [More Information Needed]
30
- - **Shared by [optional]:** [More Information Needed]
31
- - **Model type:** [More Information Needed]
32
- - **Language(s) (NLP):** [More Information Needed]
33
- - **License:** [More Information Needed]
34
- - **Finetuned from model [optional]:** [More Information Needed]
35
-
36
- ### Model Sources [optional]
37
-
38
- <!-- Provide the basic links for the model. -->
39
-
40
- - **Repository:** [More Information Needed]
41
- - **Paper [optional]:** [More Information Needed]
42
- - **Demo [optional]:** [More Information Needed]
43
-
44
- ## Uses
45
-
46
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
47
-
48
- ### Direct Use
49
-
50
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
51
-
52
- [More Information Needed]
53
-
54
- ### Downstream Use [optional]
55
-
56
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
57
-
58
- [More Information Needed]
59
-
60
- ### Out-of-Scope Use
61
-
62
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
63
-
64
- [More Information Needed]
65
-
66
- ## Bias, Risks, and Limitations
67
-
68
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
69
-
70
- [More Information Needed]
71
-
72
- ### Recommendations
73
-
74
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
75
-
76
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
77
-
78
- ## How to Get Started with the Model
79
-
80
- Use the code below to get started with the model.
81
-
82
- [More Information Needed]
83
-
84
- ## Training Details
85
-
86
- ### Training Data
87
-
88
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
89
-
90
- [More Information Needed]
91
-
92
- ### Training Procedure
93
-
94
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
95
-
96
- #### Preprocessing [optional]
97
 
98
- [More Information Needed]
99
 
 
100
 
101
- #### Training Hyperparameters
102
 
103
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
104
 
105
- #### Speeds, Sizes, Times [optional]
 
 
 
 
 
 
 
 
 
 
 
 
 
106
 
107
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
108
 
109
- [More Information Needed]
110
 
111
- ## Evaluation
 
 
 
 
112
 
113
- <!-- This section describes the evaluation protocols and provides the results. -->
114
-
115
- ### Testing Data, Factors & Metrics
116
-
117
- #### Testing Data
118
-
119
- <!-- This should link to a Dataset Card if possible. -->
120
-
121
- [More Information Needed]
122
-
123
- #### Factors
124
-
125
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
126
-
127
- [More Information Needed]
128
-
129
- #### Metrics
130
-
131
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
132
-
133
- [More Information Needed]
134
-
135
- ### Results
136
-
137
- [More Information Needed]
138
-
139
- #### Summary
140
-
141
-
142
-
143
- ## Model Examination [optional]
144
-
145
- <!-- Relevant interpretability work for the model goes here -->
146
-
147
- [More Information Needed]
148
-
149
- ## Environmental Impact
150
-
151
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
152
-
153
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
154
-
155
- - **Hardware Type:** [More Information Needed]
156
- - **Hours used:** [More Information Needed]
157
- - **Cloud Provider:** [More Information Needed]
158
- - **Compute Region:** [More Information Needed]
159
- - **Carbon Emitted:** [More Information Needed]
160
-
161
- ## Technical Specifications [optional]
162
-
163
- ### Model Architecture and Objective
164
-
165
- [More Information Needed]
166
-
167
- ### Compute Infrastructure
168
-
169
- [More Information Needed]
170
-
171
- #### Hardware
172
-
173
- [More Information Needed]
174
-
175
- #### Software
176
-
177
- [More Information Needed]
178
-
179
- ## Citation [optional]
180
-
181
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
182
-
183
- **BibTeX:**
184
-
185
- [More Information Needed]
186
-
187
- **APA:**
188
-
189
- [More Information Needed]
190
 
191
- ## Glossary [optional]
 
 
 
192
 
193
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
194
 
195
- [More Information Needed]
196
 
197
- ## More Information [optional]
198
 
199
- [More Information Needed]
 
 
200
 
201
- ## Model Card Authors [optional]
202
 
203
- [More Information Needed]
204
 
205
- ## Model Card Contact
 
206
 
207
- [More Information Needed]
208
 
 
 
209
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: cc-by-nc-4.0
3
  datasets:
4
  - berkeley-nest/Nectar
5
  language:
 
10
  - RLHF
11
  - RLAIF
12
  ---
13
+ # Starling-RM-7B-alpha
 
14
 
15
  <!-- Provide a quick summary of what the model is/does. -->
16
 
17
+ - **Developed by:** Banghua Zhu * , Evan Frick * , Tianhao Wu * , Hanlin Zhu and Jiantao Jiao.
18
+ - **Model type:** Reward Model for RLHF
19
+ - **License:** Non commercial license
20
+ - **Finetuned from model:** [Llama2-7B-Chat](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf)
21
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
 
23
 
24
+ We introduce Starling-7B, an open large language model (LLM) trained by Reinforcement Learning from AI Feedback (RLAIF). The model harnesses the power of our new GPT-4 labeled ranking dataset, Nectar, and our new reward training and policy tuning pipeline. Starling-7B-alpha scores 8.09 in MT Bench with GPT-4 as a judge, outperforming every model to date on MT-Bench except for OpenAI's GPT-4 and GPT-4 Turbo. We release the ranking dataset [Nectar](https://huggingface.co/berkeley-nest/nector), the reward model [Starling-RM-7B-alpha](https://huggingface.co/berkeley-nest/Starling-RM-7B-alpha) and the language model [Starling-LM-7B-alpha](https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha) on HuggingFace, and an online demo in LMSYS [Chatbot Arena](https://chat.lmsys.org). Stay tuned for our forthcoming code and paper, which will provide more details on the whole process.
25
 
26
+ Starling-LM-7B-alpha is a language model trained from [Openchat 3.5](https://huggingface.co/openchat/openchat_3.5)
27
 
 
28
 
29
+ | Model | Tuning Method | MT Bench | AlpacaEval | MMLU |
30
+ |-----------------------|------------------|----------|------------|------|
31
+ | GPT-4-Turbo | ? | 9.32 | 97.70 | |
32
+ | GPT-4 | SFT + PPO | 8.99 | 95.28 | 86.4 |
33
+ | Starling-7B | C-RLFT + APA | 8.09 | 91.99 | 63.9 |
34
+ | Claude-2 | ? | 8.06 | 91.36 | 78.5 |
35
+ | GPT-3.5-Turbo | ? | 7.94 | 89.37 | 70 |
36
+ | Claude-1 | ? | 7.9 | 88.39 | 77 |
37
+ | Tulu-2-dpo-70b | SFT + DPO | 7.89 | 95.1 | |
38
+ | Openchat-3.5 | C-RLFT | 7.81 | 88.51 | 64.3 |
39
+ | Zephyr-7B-beta | SFT + DPO | 7.34 | 90.60 | 61.4 |
40
+ | Llama-2-70b-chat-hf | SFT + PPO | 6.86 | 92.66 | 63 |
41
+ | Neural-chat-7b-v3-1 | SFT + DPO | 6.84 | 84.53 | 62.4 |
42
+ | Tulu-2-dpo-7b | SFT + DPO | 6.29 | 85.1 | |
43
 
 
44
 
 
45
 
46
+ ollowing the method of training reward model in [the instructGPT paper](https://arxiv.org/abs/2203.02155), we remove the last layer of Llama2-7B Chat,
47
+ and concatenate a linear layer that outputs scalar for any pair of input prompt and response. We train the reward model with preference dataset [berkeley-nest/Nectar](https://huggingface.co/berkeley-nest),
48
+ with the K-wise maximum likelihood estimator proposed in [this paper](https://arxiv.org/abs/2301.11270). The reward model outputs a scalar for any given prompt and response. A response that is more helpful and
49
+ less harmful will get the highest reward score. Note that since the preference dataset [berkeley-nest/Nectar](https://huggingface.co/berkeley-nest) is based on GPT-4 preference, the reward model is likely to be biased
50
+ towards GPT-4's own preference, including longer responses and certain response format.
51
 
52
+ For more detailed discussions, please check out our [blog post](https://starling.cs.berkeley.edu), and stay tuned for our upcoming code and paper!
53
+ <!-- Provide the basic links for the model. -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54
 
55
+ - **Blog:** https://starling.cs.berkeley.edu/
56
+ - **Paper:** Coming soon!
57
+ - **Code:** Coming soon!
58
+ -
59
 
 
60
 
 
61
 
62
+ ## Uses
63
 
64
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
65
+ Our model follows the exact chat template and usage as [Openchat 3.5](https://huggingface.co/openchat/openchat_3.5). Please refer to their model card for more details.
66
+ In addition, our model is hosted on LMSYS [Chatbot Arena](https://chat.lmsys.org) for free test.
67
 
 
68
 
 
69
 
70
+ ## License
71
+ The dataset, model and online demo is a research preview intended for non-commercial use only, subject to the data distillation [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation.
72
 
 
73
 
74
+ ## Acknowledgment
75
+ We would like to thank Wei-Lin Chiang from Berkeley for detailed feedback of the blog and the projects. We would like to thank the [LMSYS Organization](https://lmsys.org/) for their support of [lmsys-chat-1M](https://huggingface.co/datasets/lmsys/lmsys-chat-1m) dataset, evaluation and online demo. We would like to thank the open source community for their efforts in providing the datasets and base models we used to develope the project, including but not limited to Anthropic, Llama, Mistral, Hugging Face H4, LMSYS, OpenChat, OpenBMB, Flan and ShareGPT.
76
 
77
+ ## Citation
78
+ ```
79
+ @misc{starling2023,
80
+ title = {Starling-7B: Improving LLM Helpfulness & Harmlessness with RLAIF},
81
+ url = {},
82
+ author = {Zhu, Banghua and Frick, Evan and Wu, Tianhao and Zhu, Hanlin and Jiao, Jiantao},
83
+ month = {November},
84
+ year = {2023}
85
+ }
86
+ ```