berrzy's picture
Upload PPO LunarLander-v2 trained agent
25483a6
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fe16f603680>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe16f603710>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe16f6037a0>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe16f603830>",
"_build": "<function ActorCriticPolicy._build at 0x7fe16f6038c0>",
"forward": "<function ActorCriticPolicy.forward at 0x7fe16f603950>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe16f6039e0>",
"_predict": "<function ActorCriticPolicy._predict at 0x7fe16f603a70>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe16f603b00>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe16f603b90>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe16f603c20>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7fe16f655600>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"num_timesteps": 507904,
"_total_timesteps": 500000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1651702563.70913,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEb0BL6ElyY+Jtn7u1elGr65BbW9etnAPAAAAAAAAAAAzQDLu1wTKbrTiOM6fPFpNb/wkLuQtAS6AACAPwAAgD8z3p+8jwIOuKiFdLyx3yU98T4Tuq60a7wAAIA/AACAPxrKdj24qZ8/y2fJPhSBzb6hE0m9syMhvQAAAAAAAAAAWgXlPTtM1T4DneS8Cw5MvlTuYr2wdXU9AAAAAAAAAADNGL08SOuPukQRDTlmc082wjdFu7PWIbgAAIA/AACAP93u+D4tQd29kgyOPHKjGb3L57Q8Og19vQAAAAAAAAAA5l8pP+yACr6ouXU8E8F4Omtx7D1W6Ag8AACAPwAAgD+mCtK9yFeIvC5CMj7FW648u7n7Pc46ir0AAIA/AAAAAJpJ3DwsfnM+8P1uPcelP77BLpQ9j1wTPQAAAAAAAAAAHSGXPkDXhr2y95s7Hrheul0e5L5sABq7AACAPwAAgD871Zy+Ax53vMqQsbseIIy5udy1Pf5EazcAAIA/AACAP9zDBr93ufq9szSCvjFzdLwIry8+m+f9vAAAAAAAAAAADTWvPQo4Xbug7Qm9Nkc/PJ2KCL3QCt48AAAAAAAAAADAM7a911Nwufu6RrtbjLa2bEaPOyOUJjYAAIA/AACAP5rHpLz2dEa6nUTUOfOzjTSDw7G7tVX1uAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.015808000000000044,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVcRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIr+lBQSkuM0CUhpRSlIwBbJRLs4wBdJRHQImQKXt0FKV1fZQoaAZoCWgPQwjTwfo/h6tPwJSGlFKUaBVLy2gWR0CJz/1FH8TBdX2UKGgGaAloD0MIlUVhF0XqWECUhpRSlGgVTegDaBZHQInbuSbH6uZ1fZQoaAZoCWgPQwhmvK302jhawJSGlFKUaBVLxWgWR0CJ6m4//vORdX2UKGgGaAloD0MIoHB2a5niWUCUhpRSlGgVTegDaBZHQInxChvitJZ1fZQoaAZoCWgPQwgFMjuLXslgQJSGlFKUaBVN6ANoFkdAifOhomG/OHV9lChoBmgJaA9DCPCjGvZ7x1BAlIaUUpRoFU3oA2gWR0CJ9PjgAIY4dX2UKGgGaAloD0MI4sluZvQSUkCUhpRSlGgVTegDaBZHQIn2APkJa7p1fZQoaAZoCWgPQwinsb0W9CBHwJSGlFKUaBVL9GgWR0CKAmVeruIAdX2UKGgGaAloD0MIS+fDswRpU0CUhpRSlGgVTegDaBZHQIoNjiADq4Z1fZQoaAZoCWgPQwijXBq/8DoiQJSGlFKUaBVL5mgWR0CKGHZNfw7UdX2UKGgGaAloD0MIQ8pPqn3dYECUhpRSlGgVTegDaBZHQIoa44sEq2B1fZQoaAZoCWgPQwiFJ/T6ky5aQJSGlFKUaBVN6ANoFkdAihtYmLLpzXV9lChoBmgJaA9DCPIiE/BrjWBAlIaUUpRoFU3oA2gWR0CKLSG8EmpmdX2UKGgGaAloD0MI0ZLH0/IFV0CUhpRSlGgVTegDaBZHQIouoJu2qkx1fZQoaAZoCWgPQwiXHHdKB7lKwJSGlFKUaBVLymgWR0CKOP06HTJAdX2UKGgGaAloD0MIUyEeiZcMXUCUhpRSlGgVTegDaBZHQIpAqkhzNll1fZQoaAZoCWgPQwhiLT4FwFVoQJSGlFKUaBVN/AJoFkdAikFAcLjPwHV9lChoBmgJaA9DCMlxp3SwFlFAlIaUUpRoFU3oA2gWR0CKVAwYcebNdX2UKGgGaAloD0MIvTWwVYIHTMCUhpRSlGgVS75oFkdAil0xXXAdn3V9lChoBmgJaA9DCAr3yrxVNl1AlIaUUpRoFU3oA2gWR0CKXdslb/wRdX2UKGgGaAloD0MIwM+4cCDiWMCUhpRSlGgVTWwCaBZHQIpglzdUKiR1fZQoaAZoCWgPQwhe8dQjDVBUQJSGlFKUaBVN6ANoFkdAimoojW07bXV9lChoBmgJaA9DCL73N2ivZV7AlIaUUpRoFU2BAWgWR0CKsdWz4UN8dX2UKGgGaAloD0MIuFuSA3buW0CUhpRSlGgVTegDaBZHQIq7e5tm+TN1fZQoaAZoCWgPQwgPgSOBBjBbQJSGlFKUaBVN6ANoFkdAisFZqVQhwHV9lChoBmgJaA9DCP+R6dDpy11AlIaUUpRoFU3oA2gWR0CKw7W7OE/TdX2UKGgGaAloD0MIB3k9mBTdYECUhpRSlGgVTegDaBZHQIrGHio86mx1fZQoaAZoCWgPQwgbuAN1yhs6wJSGlFKUaBVL6WgWR0CKx0WqLjxTdX2UKGgGaAloD0MIhShf0EL2ZECUhpRSlGgVTegDaBZHQIrd6dz4k/t1fZQoaAZoCWgPQwg+IxEaweoywJSGlFKUaBVL+2gWR0CK4cHP/rB1dX2UKGgGaAloD0MIn8vUJHgjHECUhpRSlGgVS9VoFkdAiuPioCMglnV9lChoBmgJaA9DCO3T8ZiBChxAlIaUUpRoFUvJaBZHQIrkduivgWJ1fZQoaAZoCWgPQwhg5jv4iZZhQJSGlFKUaBVN6ANoFkdAiugNNi6QNnV9lChoBmgJaA9DCGFtjJ3woVhAlIaUUpRoFU3oA2gWR0CK6vuUliSadX2UKGgGaAloD0MISzs1lxtoP0CUhpRSlGgVTegDaBZHQIr8qjWTX8R1fZQoaAZoCWgPQwhT6Sec3QNeQJSGlFKUaBVN6ANoFkdAiv4hBAv+O3V9lChoBmgJaA9DCNehmpKsnWJAlIaUUpRoFU3oA2gWR0CLCDq+JxecdX2UKGgGaAloD0MI+PpalxqhEECUhpRSlGgVS9BoFkdAiwmj+zdDY3V9lChoBmgJaA9DCPmiPV5IszXAlIaUUpRoFUvWaBZHQIsgT+irT6V1fZQoaAZoCWgPQwj1Se6wiQxaQJSGlFKUaBVN6ANoFkdAiygQtz0Yj3V9lChoBmgJaA9DCJhuEoPAQmBAlIaUUpRoFU3oA2gWR0CLMs8NhE0BdX2UKGgGaAloD0MI1PAtrBunVECUhpRSlGgVTegDaBZHQIszjCm/Fit1fZQoaAZoCWgPQwgsZK4MKnJgQJSGlFKUaBVN6ANoFkdAizadIPK+z3V9lChoBmgJaA9DCLJHqBlSyFJAlIaUUpRoFU3oA2gWR0CLiilF+d9VdX2UKGgGaAloD0MIfNKJBFPfVUCUhpRSlGgVTegDaBZHQIubetr9ETh1fZQoaAZoCWgPQwgtlbcjnJYywJSGlFKUaBVNBgFoFkdAi5uzz/ZM+XV9lChoBmgJaA9DCDjzqzlAJklAlIaUUpRoFU3oA2gWR0CLon5hScbzdX2UKGgGaAloD0MI7x6g+3LKSECUhpRSlGgVTegDaBZHQIu995t3wCt1fZQoaAZoCWgPQwi4PxcNGRZZQJSGlFKUaBVN6ANoFkdAi8JyLQ5WBHV9lChoBmgJaA9DCIrMXODyLFhAlIaUUpRoFU3oA2gWR0CLxJZha1TjdX2UKGgGaAloD0MINA9gkd/PYUCUhpRSlGgVTegDaBZHQIvFNX3g1m91fZQoaAZoCWgPQwhbCd0lcSRfQJSGlFKUaBVN6ANoFkdAi8ic2Jiy6nV9lChoBmgJaA9DCJ6xL9l4PlHAlIaUUpRoFUv8aBZHQIvNw+6iCat1fZQoaAZoCWgPQwgYBiy5ioNbQJSGlFKUaBVN6ANoFkdAi93gE2YOUnV9lChoBmgJaA9DCFjhlo8kMmJAlIaUUpRoFU3oA2gWR0CL6oSkCV8kdX2UKGgGaAloD0MIherm4m8aVUCUhpRSlGgVTegDaBZHQIvr8hvBJqZ1fZQoaAZoCWgPQwib/1cdORROQJSGlFKUaBVN6ANoFkdAjAG+fh/AkHV9lChoBmgJaA9DCLzOhvwzXFxAlIaUUpRoFU3oA2gWR0CMCOOPNmlJdX2UKGgGaAloD0MIP5C8cygYXUCUhpRSlGgVTegDaBZHQIwTOOQyRCB1fZQoaAZoCWgPQwi4rS08LzRYQJSGlFKUaBVN6ANoFkdAjBPzhgmZ3XV9lChoBmgJaA9DCA0a+ie4wClAlIaUUpRoFU0IAWgWR0CMFk9vCMxXdX2UKGgGaAloD0MITioaa3/xV0CUhpRSlGgVTegDaBZHQIxrrlDF6zF1fZQoaAZoCWgPQwgGED6UaEnkv5SGlFKUaBVN6ANoFkdAjH0YNZvDQHV9lChoBmgJaA9DCFeW6CyzKExAlIaUUpRoFU3oA2gWR0CMfVKU3XI2dX2UKGgGaAloD0MIwTbiyW6CVkCUhpRSlGgVTegDaBZHQIyg00rK/211fZQoaAZoCWgPQwj59q5BX3NbQJSGlFKUaBVN6ANoFkdAjKVgDzRQanV9lChoBmgJaA9DCLSR66aUdl5AlIaUUpRoFU3oA2gWR0CMp7MK1G9YdX2UKGgGaAloD0MI1XlU/N+1XkCUhpRSlGgVTegDaBZHQIyoYBRyfcx1fZQoaAZoCWgPQwiXcVMDzR9TQJSGlFKUaBVN6ANoFkdAjKu4RujynXV9lChoBmgJaA9DCHfbheY6HTbAlIaUUpRoFU0AAWgWR0CMrDFfiPyTdX2UKGgGaAloD0MIFcRA174QSECUhpRSlGgVTegDaBZHQIywzrmhdt51fZQoaAZoCWgPQwjMm8O12v82QJSGlFKUaBVN6ANoFkdAjL6/5+H8CXV9lChoBmgJaA9DCDkJpS+ELBnAlIaUUpRoFUvbaBZHQIzKo5vLowF1fZQoaAZoCWgPQwgE4nX9gvJfQJSGlFKUaBVN6ANoFkdAjMs/0dzXBnV9lChoBmgJaA9DCMOBkCxgzFxAlIaUUpRoFU3oA2gWR0CM371Tzd1udX2UKGgGaAloD0MIYcPTK2VPRECUhpRSlGgVTegDaBZHQIzmI0oBq9J1fZQoaAZoCWgPQwi139qJkgFcQJSGlFKUaBVN6ANoFkdAjO/dAood/HV9lChoBmgJaA9DCIaTNH9M6l9AlIaUUpRoFU3oA2gWR0CM8Iy+HrQgdX2UKGgGaAloD0MIUrmJWpqRXUCUhpRSlGgVTegDaBZHQIzythiLEUF1fZQoaAZoCWgPQwgZxt0gWlstwJSGlFKUaBVNDAFoFkdAjPP1XvH933V9lChoBmgJaA9DCBCWsaEbdmZAlIaUUpRoFU3oA2gWR0CNRxFNL128dX2UKGgGaAloD0MIMpBnl2/9B0CUhpRSlGgVS+toFkdAjU5IYvWYnnV9lChoBmgJaA9DCGX7kLdc0WRAlIaUUpRoFU3oA2gWR0CNVTGCqZMMdX2UKGgGaAloD0MIgJvFi4WPWECUhpRSlGgVTegDaBZHQI10EXHim2t1fZQoaAZoCWgPQwiloNtLmotgQJSGlFKUaBVN6ANoFkdAjXf1aW5Yo3V9lChoBmgJaA9DCHcxzXSv1UdAlIaUUpRoFU3oA2gWR0CNehRXwLE2dX2UKGgGaAloD0MIZoUi3c+AXkCUhpRSlGgVTegDaBZHQI16q4+bExZ1fZQoaAZoCWgPQwhP54pSQsRgwJSGlFKUaBVNHAFoFkdAjXup3HJcPnV9lChoBmgJaA9DCAiPNo5YSl1AlIaUUpRoFU3oA2gWR0CNfazjWCmNdX2UKGgGaAloD0MIUyXK3lLKW0CUhpRSlGgVTegDaBZHQI2CFIsiB5J1fZQoaAZoCWgPQwjFOH8TCkFXQJSGlFKUaBVN6ANoFkdAjY5i1qnFYXV9lChoBmgJaA9DCAsMWd3q4l9AlIaUUpRoFU3oA2gWR0CNmnlkH2RJdX2UKGgGaAloD0MIOq+xS1TtWECUhpRSlGgVTegDaBZHQI2vj4tYjjd1fZQoaAZoCWgPQwipF3yakyNaQJSGlFKUaBVN6ANoFkdAjbZqWszVMHV9lChoBmgJaA9DCEwW9x+ZY29AlIaUUpRoFU3DAWgWR0CNt/qs2eg+dX2UKGgGaAloD0MIaOp1i8CjYECUhpRSlGgVTegDaBZHQI2/br3TNMZ1fZQoaAZoCWgPQwjPu7GgMEheQJSGlFKUaBVN6ANoFkdAjcIs4ku6E3V9lChoBmgJaA9DCK4upwTEyWRAlIaUUpRoFU3oA2gWR0CNw47/4qPPdX2UKGgGaAloD0MI6UMX1DdxYECUhpRSlGgVTegDaBZHQI3b1Qj2SMd1ZS4="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 124,
"n_steps": 1024,
"gamma": 0.999,
"gae_lambda": 0.98,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 4,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
}