Update README.md
Browse files
README.md
CHANGED
@@ -148,6 +148,7 @@ Our final models were trained on a different number of steps and sequence length
|
|
148 |
|
149 |
<figure>
|
150 |
|
|
|
151 |
| Dataset | Metric | RoBERTa-b | RoBERTa-l | BETO | mBERT | BERTIN |
|
152 |
|-------------|----------|-----------|-----------|--------|--------|--------|
|
153 |
| UD-POS | F1 | **0.9907** | 0.9901 | 0.9900 | 0.9886 | **0.9904** |
|
@@ -159,14 +160,13 @@ Our final models were trained on a different number of steps and sequence length
|
|
159 |
| PAWS-X | F1 | 0.9035 | 0.9000 | 0.8915 | 0.9020 | 0.8820 |
|
160 |
| XNLI | Accuracy | 0.8016 | WiP | 0.8130 | 0.7876 | WiP |
|
161 |
|
162 |
-
|
163 |
-
<caption>Table 1. Evaluation made by the Barcelona Supercomputing Center of their models and BERTIN (beta, seq len 128).</caption>
|
164 |
</figure>
|
165 |
|
166 |
All of our models attained good accuracy values, in the range of 0.65, as can be seen in Table 2:
|
167 |
|
168 |
<figure>
|
169 |
|
|
|
170 |
| Model | Accuracy |
|
171 |
|----------------------------------------------------|----------|
|
172 |
| bertin-project/bertin-roberta-base-spanish | 0.6547 |
|
@@ -176,8 +176,6 @@ All of our models attained good accuracy values, in the range of 0.65, as can be
|
|
176 |
| bertin-project/bertin-base-random-exp-512seqlen | 0.5907 |
|
177 |
| bertin-project/bertin-base-gaussian-exp-512seqlen | **0.6873** |
|
178 |
|
179 |
-
|
180 |
-
<caption>Table 2. Accuracy for the different language models.</caption>
|
181 |
</figure>
|
182 |
|
183 |
We are currently in the process of applying our language models to downstream tasks.
|
@@ -192,6 +190,7 @@ All models trained with max length 512 and batch size 8, using the CoNLL 2002 da
|
|
192 |
|
193 |
<figure>
|
194 |
|
|
|
195 |
| Model | F1 | Accuracy |
|
196 |
|----------------------------------------------------|----------|----------|
|
197 |
| bert-base-multilingual-cased | 0.9629 | 0.9687 |
|
@@ -204,8 +203,6 @@ All models trained with max length 512 and batch size 8, using the CoNLL 2002 da
|
|
204 |
| bertin-project/bertin-base-random-exp-512seqlen | 0.9660 | 0.9707 |
|
205 |
| bertin-project/bertin-base-gaussian-exp-512seqlen | **0.9662** | **0.9714** |
|
206 |
|
207 |
-
|
208 |
-
<caption>Table 3. Results for POS.</caption>
|
209 |
</figure>
|
210 |
|
211 |
|
@@ -214,6 +211,7 @@ All models trained with max length 512 and batch size 8, using the CoNLL 2002 da
|
|
214 |
|
215 |
<figure>
|
216 |
|
|
|
217 |
| Model | F1 | Accuracy |
|
218 |
|----------------------------------------------------|----------|----------|
|
219 |
| bert-base-multilingual-cased | 0.8539 | 0.9779 |
|
@@ -226,8 +224,6 @@ All models trained with max length 512 and batch size 8, using the CoNLL 2002 da
|
|
226 |
| bertin-project/bertin-base-random-exp-512seqlen | 0.8616 | 0.9803 |
|
227 |
| bertin-project/bertin-base-gaussian-exp-512seqlen | **0.8764** | **0.9819** |
|
228 |
|
229 |
-
|
230 |
-
<caption>Table 4. Results for NER.</caption>
|
231 |
</figure>
|
232 |
|
233 |
|
@@ -236,6 +232,7 @@ All models trained with max length 512 and batch size 8. These numbers are surpr
|
|
236 |
|
237 |
<figure>
|
238 |
|
|
|
239 |
| Model | Accuracy |
|
240 |
|----------------------------------------------------|----------|
|
241 |
| bert-base-multilingual-cased | 0.5765 |
|
@@ -248,8 +245,6 @@ All models trained with max length 512 and batch size 8. These numbers are surpr
|
|
248 |
| bertin-project/bertin-base-random-exp-512seqlen | 0.6735 |
|
249 |
| bertin-project/bertin-base-gaussian-exp-512seqlen | **0.8965** |
|
250 |
|
251 |
-
|
252 |
-
<caption>Table 5. Results for PAWS-X.</caption>
|
253 |
</figure>
|
254 |
|
255 |
|
@@ -257,6 +252,7 @@ All models trained with max length 512 and batch size 8. These numbers are surpr
|
|
257 |
|
258 |
<figure>
|
259 |
|
|
|
260 |
| Model | Accuracy |
|
261 |
|----------------------------------------------------|----------|
|
262 |
| bert-base-multilingual-cased | 0.7852 |
|
@@ -268,13 +264,14 @@ All models trained with max length 512 and batch size 8. These numbers are surpr
|
|
268 |
| bertin-project/bertin-base-random-exp-512seqlen | 0.7723 |
|
269 |
| bertin-project/bertin-base-gaussian-exp-512seqlen | 0.7878 |
|
270 |
|
271 |
-
|
272 |
-
<caption>Table 6. Results for XNLI with sequence length 256 and batch size 32.</caption>
|
273 |
</figure>
|
274 |
|
275 |
|
276 |
<figure>
|
277 |
|
|
|
|
|
|
|
278 |
| Model | Accuracy |
|
279 |
|----------------------------------------------------|----------|
|
280 |
| bert-base-multilingual-cased | WIP |
|
@@ -287,9 +284,6 @@ All models trained with max length 512 and batch size 8. These numbers are surpr
|
|
287 |
| bertin-project/bertin-base-gaussian-exp-512seqlen | 0.7843 |
|
288 |
|
289 |
|
290 |
-
<caption>Table 7. Results for XNLI with sequence length 512 and batch size 16.</caption>
|
291 |
-
</figure>
|
292 |
-
|
293 |
# Conclusions
|
294 |
|
295 |
With roughly 10 days worth of access to 3xTPUv3-8, we have achieved remarkable results surpassing previous state of the art in a few tasks, and even improving document classification on models trained in massive supercomputers with very large—private—and highly curated datasets.
|
|
|
148 |
|
149 |
<figure>
|
150 |
|
151 |
+
<caption>Table 1. Evaluation made by the Barcelona Supercomputing Center of their models and BERTIN (beta, seq len 128).</caption>
|
152 |
| Dataset | Metric | RoBERTa-b | RoBERTa-l | BETO | mBERT | BERTIN |
|
153 |
|-------------|----------|-----------|-----------|--------|--------|--------|
|
154 |
| UD-POS | F1 | **0.9907** | 0.9901 | 0.9900 | 0.9886 | **0.9904** |
|
|
|
160 |
| PAWS-X | F1 | 0.9035 | 0.9000 | 0.8915 | 0.9020 | 0.8820 |
|
161 |
| XNLI | Accuracy | 0.8016 | WiP | 0.8130 | 0.7876 | WiP |
|
162 |
|
|
|
|
|
163 |
</figure>
|
164 |
|
165 |
All of our models attained good accuracy values, in the range of 0.65, as can be seen in Table 2:
|
166 |
|
167 |
<figure>
|
168 |
|
169 |
+
<caption>Table 2. Accuracy for the different language models.</caption>
|
170 |
| Model | Accuracy |
|
171 |
|----------------------------------------------------|----------|
|
172 |
| bertin-project/bertin-roberta-base-spanish | 0.6547 |
|
|
|
176 |
| bertin-project/bertin-base-random-exp-512seqlen | 0.5907 |
|
177 |
| bertin-project/bertin-base-gaussian-exp-512seqlen | **0.6873** |
|
178 |
|
|
|
|
|
179 |
</figure>
|
180 |
|
181 |
We are currently in the process of applying our language models to downstream tasks.
|
|
|
190 |
|
191 |
<figure>
|
192 |
|
193 |
+
<caption>Table 3. Results for POS.</caption>
|
194 |
| Model | F1 | Accuracy |
|
195 |
|----------------------------------------------------|----------|----------|
|
196 |
| bert-base-multilingual-cased | 0.9629 | 0.9687 |
|
|
|
203 |
| bertin-project/bertin-base-random-exp-512seqlen | 0.9660 | 0.9707 |
|
204 |
| bertin-project/bertin-base-gaussian-exp-512seqlen | **0.9662** | **0.9714** |
|
205 |
|
|
|
|
|
206 |
</figure>
|
207 |
|
208 |
|
|
|
211 |
|
212 |
<figure>
|
213 |
|
214 |
+
<caption>Table 4. Results for NER.</caption>
|
215 |
| Model | F1 | Accuracy |
|
216 |
|----------------------------------------------------|----------|----------|
|
217 |
| bert-base-multilingual-cased | 0.8539 | 0.9779 |
|
|
|
224 |
| bertin-project/bertin-base-random-exp-512seqlen | 0.8616 | 0.9803 |
|
225 |
| bertin-project/bertin-base-gaussian-exp-512seqlen | **0.8764** | **0.9819** |
|
226 |
|
|
|
|
|
227 |
</figure>
|
228 |
|
229 |
|
|
|
232 |
|
233 |
<figure>
|
234 |
|
235 |
+
<caption>Table 5. Results for PAWS-X.</caption>
|
236 |
| Model | Accuracy |
|
237 |
|----------------------------------------------------|----------|
|
238 |
| bert-base-multilingual-cased | 0.5765 |
|
|
|
245 |
| bertin-project/bertin-base-random-exp-512seqlen | 0.6735 |
|
246 |
| bertin-project/bertin-base-gaussian-exp-512seqlen | **0.8965** |
|
247 |
|
|
|
|
|
248 |
</figure>
|
249 |
|
250 |
|
|
|
252 |
|
253 |
<figure>
|
254 |
|
255 |
+
<caption>Table 6. Results for XNLI with sequence length 256 and batch size 32.</caption>
|
256 |
| Model | Accuracy |
|
257 |
|----------------------------------------------------|----------|
|
258 |
| bert-base-multilingual-cased | 0.7852 |
|
|
|
264 |
| bertin-project/bertin-base-random-exp-512seqlen | 0.7723 |
|
265 |
| bertin-project/bertin-base-gaussian-exp-512seqlen | 0.7878 |
|
266 |
|
|
|
|
|
267 |
</figure>
|
268 |
|
269 |
|
270 |
<figure>
|
271 |
|
272 |
+
<caption>Table 7. Results for XNLI with sequence length 512 and batch size 16.</caption>
|
273 |
+
</figure>
|
274 |
+
|
275 |
| Model | Accuracy |
|
276 |
|----------------------------------------------------|----------|
|
277 |
| bert-base-multilingual-cased | WIP |
|
|
|
284 |
| bertin-project/bertin-base-gaussian-exp-512seqlen | 0.7843 |
|
285 |
|
286 |
|
|
|
|
|
|
|
287 |
# Conclusions
|
288 |
|
289 |
With roughly 10 days worth of access to 3xTPUv3-8, we have achieved remarkable results surpassing previous state of the art in a few tasks, and even improving document classification on models trained in massive supercomputers with very large—private—and highly curated datasets.
|