#!/usr/bin/env python3 from datasets import load_dataset from tokenizers import ByteLevelBPETokenizer # Load dataset <<<<<<< HEAD dataset = load_dataset("oscar", "unshuffled_deduplicated_es", split="train[:5000000]") # Instantiate tokenizer tokenizer = ByteLevelBPETokenizer() def batch_iterator(batch_size=100_000): ======= dataset = load_dataset("oscar", "unshuffled_deduplicated_es", split="train") # Instantiate tokenizer tokenizer = ByteLevelBPETokenizer() def batch_iterator(batch_size=1_000_000): >>>>>>> d5cede47e74aa6ec36f20acf5aba37c6734c6186 for i in range(0, len(dataset), batch_size): yield dataset["text"][i: i + batch_size] # Customized training tokenizer.train_from_iterator(batch_iterator(), vocab_size=50265, min_frequency=2, special_tokens=[ "<s>", "<pad>", "</s>", "<unk>", "<mask>", ]) # Save files to disk tokenizer.save("./tokenizer.json")