File size: 1,508 Bytes
525cd3d 2493e12 525cd3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
---
base_model:
- bfuzzy1/acheron-316
- h2oai/h2o-danube3-500m-chat
tags:
- merge
- mergekit
- lazymergekit
- bfuzzy1/acheron-316
- h2oai/h2o-danube3-500m-chat
---
![image/png](https://cdn-uploads.huggingface.co/production/uploads/65afe3fd7c11edbf6e1a1277/J6LZH1sO-6JXzgYoQShdX.png)
# acheron-o9
acheron-o9 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [bfuzzy1/acheron-316](https://huggingface.co/bfuzzy1/acheron-316)
* [h2oai/h2o-danube3-500m-chat](https://huggingface.co/h2oai/h2o-danube3-500m-chat)
## 🧩 Configuration
```yaml
slices:
- sources:
- model: bfuzzy1/acheron-316
layer_range: [0, 14]
- sources:
- model: h2oai/h2o-danube3-500m-chat
layer_range: [4, 16]
merge_method: passthrough
dtype: float16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "bfuzzy1/acheron-o9"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
``` |