--- base_model: - bfuzzy1/acheron-316 - h2oai/h2o-danube3-500m-chat tags: - merge - mergekit - lazymergekit - bfuzzy1/acheron-316 - h2oai/h2o-danube3-500m-chat --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65afe3fd7c11edbf6e1a1277/J6LZH1sO-6JXzgYoQShdX.png) # acheron-o9 acheron-o9 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [bfuzzy1/acheron-316](https://huggingface.co/bfuzzy1/acheron-316) * [h2oai/h2o-danube3-500m-chat](https://huggingface.co/h2oai/h2o-danube3-500m-chat) ## 🧩 Configuration ```yaml slices: - sources: - model: bfuzzy1/acheron-316 layer_range: [0, 14] - sources: - model: h2oai/h2o-danube3-500m-chat layer_range: [4, 16] merge_method: passthrough dtype: float16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "bfuzzy1/acheron-o9" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```