File size: 3,577 Bytes
396739d
60895f8
 
 
 
 
 
 
 
 
396739d
 
60895f8
 
396739d
60895f8
396739d
60895f8
 
 
 
 
 
 
 
 
 
396739d
60895f8
396739d
60895f8
396739d
60895f8
396739d
60895f8
396739d
60895f8
396739d
60895f8
396739d
60895f8
396739d
60895f8
396739d
60895f8
 
 
 
 
 
 
 
396739d
60895f8
396739d
60895f8
 
 
 
 
 
 
 
 
 
 
 
396739d
 
60895f8
396739d
60895f8
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
license: other
base_model: nvidia/mit-b0
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: segformer-b0-finetuned-segments-sidewalk-oct-22
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# segformer-b0-finetuned-segments-sidewalk-oct-22

This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the bfwggggg/image-with-puzzle dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2327
- Mean Iou: 0.4736
- Mean Accuracy: 0.9472
- Overall Accuracy: 0.9472
- Accuracy Unlabeled: nan
- Accuracy Missing-puzzle: 0.9472
- Iou Unlabeled: 0.0
- Iou Missing-puzzle: 0.9472

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Missing-puzzle | Iou Unlabeled | Iou Missing-puzzle |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-----------------------:|:-------------:|:------------------:|
| 0.5575        | 5.0   | 20   | 0.6601          | 0.4998   | 0.9996        | 0.9996           | nan                | 0.9996                  | 0.0           | 0.9996             |
| 0.365         | 10.0  | 40   | 0.5628          | 0.4980   | 0.9960        | 0.9960           | nan                | 0.9960                  | 0.0           | 0.9960             |
| 0.2788        | 15.0  | 60   | 0.3816          | 0.4812   | 0.9624        | 0.9624           | nan                | 0.9624                  | 0.0           | 0.9624             |
| 0.2527        | 20.0  | 80   | 0.3869          | 0.4806   | 0.9611        | 0.9611           | nan                | 0.9611                  | 0.0           | 0.9611             |
| 0.2145        | 25.0  | 100  | 0.2733          | 0.4663   | 0.9326        | 0.9326           | nan                | 0.9326                  | 0.0           | 0.9326             |
| 0.206         | 30.0  | 120  | 0.2672          | 0.4739   | 0.9478        | 0.9478           | nan                | 0.9478                  | 0.0           | 0.9478             |
| 0.1866        | 35.0  | 140  | 0.2351          | 0.4667   | 0.9334        | 0.9334           | nan                | 0.9334                  | 0.0           | 0.9334             |
| 0.1696        | 40.0  | 160  | 0.2099          | 0.4749   | 0.9497        | 0.9497           | nan                | 0.9497                  | 0.0           | 0.9497             |
| 0.1639        | 45.0  | 180  | 0.2058          | 0.4723   | 0.9445        | 0.9445           | nan                | 0.9445                  | 0.0           | 0.9445             |
| 0.1719        | 50.0  | 200  | 0.2327          | 0.4736   | 0.9472        | 0.9472           | nan                | 0.9472                  | 0.0           | 0.9472             |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2