sana-1.6b-1024px-pseudo-camera-10k

This is a LyCORIS adapter derived from terminusresearch/sana-1.6b-1024px.

The main validation prompt used during training was:

A photo-realistic image of a cat

Validation settings

  • CFG: 4.2
  • CFG Rescale: 0.0
  • Steps: 30
  • Sampler: None
  • Seed: 42
  • Resolution: 1024x1024

Note: The validation settings are not necessarily the same as the training settings.

The text encoder was not trained. You may reuse the base model text encoder for inference.

Training settings

  • Training epochs: 0
  • Training steps: 100
  • Learning rate: 4e-05
    • Learning rate schedule: constant
    • Warmup steps: 500
  • Max grad norm: 0.01
  • Effective batch size: 4
    • Micro-batch size: 4
    • Gradient accumulation steps: 1
    • Number of GPUs: 1
  • Gradient checkpointing: True
  • Prediction type: epsilon (extra parameters=['training_scheduler_timestep_spacing=trailing', 'inference_scheduler_timestep_spacing=trailing'])
  • Optimizer: bnb-adamw8biteps=3e-5
  • Trainable parameter precision: Pure BF16
  • Caption dropout probability: 10.0%

LyCORIS Config:

{
    "algo": "lokr",
    "multiplier": 1.0,
    "linear_dim": 10000,
    "linear_alpha": 1,
    "factor": 16,
    "apply_preset": {
        "target_module": [
            "Attention"
        ],
        "module_algo_map": {
            "Attention": {
                "factor": 16
            }
        }
    }
}

Datasets

something-special-to-remember-by

  • Repeats: 0
  • Total number of images: 9997
  • Total number of aspect buckets: 14
  • Resolution: 1.048576 megapixels
  • Cropped: False
  • Crop style: None
  • Crop aspect: None
  • Used for regularisation data: No

Inference

import torch
from diffusers import DiffusionPipeline
from lycoris import create_lycoris_from_weights


def download_adapter(repo_id: str):
    import os
    from huggingface_hub import hf_hub_download
    adapter_filename = "pytorch_lora_weights.safetensors"
    cache_dir = os.environ.get('HF_PATH', os.path.expanduser('~/.cache/huggingface/hub/models'))
    cleaned_adapter_path = repo_id.replace("/", "_").replace("\\", "_").replace(":", "_")
    path_to_adapter = os.path.join(cache_dir, cleaned_adapter_path)
    path_to_adapter_file = os.path.join(path_to_adapter, adapter_filename)
    os.makedirs(path_to_adapter, exist_ok=True)
    hf_hub_download(
        repo_id=repo_id, filename=adapter_filename, local_dir=path_to_adapter
    )

    return path_to_adapter_file
    
model_id = 'terminusresearch/sana-1.6b-1024px'
adapter_repo_id = 'bghira/sana-1.6b-1024px-pseudo-camera-10k'
adapter_filename = 'pytorch_lora_weights.safetensors'
adapter_file_path = download_adapter(repo_id=adapter_repo_id)
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
lora_scale = 1.0
wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_file_path, pipeline.transformer)
wrapper.merge_to()

prompt = "A photo-realistic image of a cat"
negative_prompt = 'blurry, cropped, ugly'

## Optional: quantise the model to save on vram.
## Note: The model was not quantised during training, so it is not necessary to quantise it during inference time.
#from optimum.quanto import quantize, freeze, qint8
#quantize(pipeline.transformer, weights=qint8)
#freeze(pipeline.transformer)
    
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
image = pipeline(
    prompt=prompt,
    negative_prompt=negative_prompt,
    num_inference_steps=30,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
    width=1024,
    height=1024,
    guidance_scale=4.2,
    guidance_rescale=0.0,
).images[0]
image.save("output.png", format="PNG")
Downloads last month
0
Inference Examples
Inference API (serverless) does not yet support sana models for this pipeline type.

Model tree for bghira/sana-1.6b-1024px-pseudo-camera-10k

Adapter
(5)
this model