File size: 6,502 Bytes
bb1cf3c 1e8c5c4 bb1cf3c 36ee208 bb1cf3c 36ee208 1e8c5c4 36ee208 1e8c5c4 36ee208 1e8c5c4 36ee208 1e8c5c4 36ee208 1e8c5c4 36ee208 1e8c5c4 36ee208 1e8c5c4 36ee208 1e8c5c4 36ee208 1e8c5c4 36ee208 1e8c5c4 36ee208 1e8c5c4 36ee208 1e8c5c4 36ee208 1e8c5c4 36ee208 1e8c5c4 36ee208 1e8c5c4 36ee208 1e8c5c4 36ee208 1e8c5c4 36ee208 1e8c5c4 36ee208 1e8c5c4 36ee208 1e8c5c4 36ee208 1e8c5c4 36ee208 1e8c5c4 36ee208 1e8c5c4 36ee208 bb1cf3c ff8ee48 bb1cf3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
---
language:
- en
license: apache-2.0
tags:
- text-classification
- emotion
- pytorch
datasets:
- emotion
metrics:
- Accuracy, F1 Score
thumbnail: https://avatars3.githubusercontent.com/u/32437151?s=460&u=4ec59abc8d21d5feea3dab323d23a5860e6996a4&v=4
model-index:
- name: bhadresh-savani/electra-base-emotion
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: emotion
type: emotion
config: default
split: test
metrics:
- type: accuracy
value: 0.9265
name: Accuracy
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMjYwNGQxMzRmMjViNzVhODJjM2UxOGNkYmNjOTE3OTczNzUxN2IyNGY1ZmFiY2VlNzNkOWY3M2I5YmZlNDlmMyIsInZlcnNpb24iOjF9.4e7MLUVHIBXYIwOgAcSDRJ7ziMXMSwk2-Ip8DH1RjxBDthc4MiBglMxbOUUjSzTPtSSEZKqfTZonUq7yR_rwBQ
- type: precision
value: 0.911532655431019
name: Precision Macro
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzFkYzRjZGUwYmJmNmUxYjM3NzY3NWY0NzBhZjU5MDQxZWY4ZjA3OWMwMjQxMWJlODg5ZjIxZWFhYTg0ZGY2NCIsInZlcnNpb24iOjF9.I0j92y0SToxjoKkKX7AD8h5p3pDePSdQwOCBeZj-OGF0MRBeqo1Ejg-1snFFplU0mtoFF6rCvRq9WosqvRhfCA
- type: precision
value: 0.9265
name: Precision Micro
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNGE2YzUyN2ZhYTdjZjQ4OWVkN2M4MzhjZWM0YzAyYWU2YjllZDYzOTYxYTZlZDAxNjA4ODY5NTk1MmE3ODQwZiIsInZlcnNpb24iOjF9.VQSaLzlreAIfy0iDJsCo-Mg1xF4gMv-KQkeIzoTKLhyp3V7rn5d5oaD8EEsay3gDamSC-xj8LndOqFL1AokZCg
- type: precision
value: 0.9305456360257519
name: Precision Weighted
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNjcyZDdjMWE5YzhlNWUyZDg5YWUwOGRkYWFiMDNmMTY4N2QxZDg1YTU0MGQ2ZWI1ZDI5Mjk2MTVmN2JmZTA1YiIsInZlcnNpb24iOjF9.EvcL-mfmJ3rGQCaVRejoWplButUT_dQjgwPw-rWlqSC7Ex3reLa3hQ9PtYuXtYM3ymVl77rFgW2Yxf3lIn6RBg
- type: recall
value: 0.8536923122511134
name: Recall Macro
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNjIwNjU1ZmIwYzgyYzNmNmY2NDkyNjA2MDg0NDcxOWQwMmJmZTFlYzg0NjI0YWMxNzhmYTQwNzU0Yzg5ZTk4MCIsInZlcnNpb24iOjF9.8he8WOjzHqJp5h2TUig7oDrn4jwSbSB1J69fmh-2UUrpH46VpwxD5bO0MG3Nm4HHYK2ZIzPb-sTX7hhMJHM7Bw
- type: recall
value: 0.9265
name: Recall Micro
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZjRiODljZTc0ZDU3YWNlZTRlYjQwY2M5YWFiY2VkOWM5Yjg5NjYzZTNkYTA1ZTc3ZjU3YjY3ZGMzNWFiNTNhNSIsInZlcnNpb24iOjF9.W74pDxOq18_Wr3Mmd0f1whXMJuVT3DhmYCWh3Z_VKB6QMSgNUf4l1iBYukIT8Lrwr50z4pscBGY3YktlUgg5Bg
- type: recall
value: 0.9265
name: Recall Weighted
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMjgxNDhjMDcwZTA2ZWQ2NTFlMTFjOGU4NDE4ZDY0MDJjNGMwOGYzMDViYTM5Y2M5ZTc2NDM3OTdmYTc1NzhhMiIsInZlcnNpb24iOjF9.x4sUtEJWliLYqyKkKMEvb10lSxqN8vhrmSAnwtyCp0tEag6DUNEUA6_nojaC3ABIDb4ZwVd7JIcQ5yD2PKU-Dg
- type: f1
value: 0.8657529340483895
name: F1 Macro
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZmUzZjNiOTZhNjE0ZWE5NDI2NzBmOGViYTc0NWYwYWQ3ZjA1ZTE1NmM5ZWRiZjA0NGYyZDM2OWE5YzA4NDY1MyIsInZlcnNpb24iOjF9.OLYrJI7nW4-nvCbEsJDIwyGL9lI1UNM-TBpMmosbkUCLu8MhhCdMo0tdKRaCRoDUtfLlwcUG9mOayAsDdfrqCw
- type: f1
value: 0.9265
name: F1 Micro
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZWE1ZDI1MzA3YTcwODU0NTgxYTNmYjc5ZDZkYzI3OWZmYjNlNjI5OWI4MDE4NDRhOWMyNWZiMjZlMTIwNWU3YSIsInZlcnNpb24iOjF9.ZpLdxeqJjKiLxUxRIVbBZa9u5w0UMPKVwvOha4tHMTiyq3RaW8TNOkFdO7TIsgxoPdQb6wzWNDojrqJOY4vsDg
- type: f1
value: 0.924844632421077
name: F1 Weighted
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiY2VhNWZmM2E4NDI5NmRiMWJkNDk2MDMyMDZmYmE2ODBlNTA2NTdhYTc4NzRkOGU1ODczZDU4MTdhYTZlOTRiZCIsInZlcnNpb24iOjF9.93XiZO_2N0nLa2PU3TICEOT8HjURPzpaAVD_5e5MFMHrtMIB1Barg0cvzc3TCisKxV_vlt1i20d2YwtfWKgrBQ
- type: loss
value: 0.3268870413303375
name: loss
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiM2IyMjdlMWZkNjQwNWVkYzU1MWYyODJkMzAwOWJmZWJiYTI0OGRlZjhkMmZkN2JhMjJmMDdkMzQ1Y2U3NDY3MyIsInZlcnNpb24iOjF9.aEnyBFvFKixU1zh5GYkIUDcf4uD6PV7pESdbdvG_oJ1lIisOg6CEb6nekcYtDebcoL3q1cbrBdhgK6dgdShJBQ
---
# Electra-base-emotion
## Model description:
## Model Performance Comparision on Emotion Dataset from Twitter:
| Model | Accuracy | F1 Score | Test Sample per Second |
| --- | --- | --- | --- |
| [Distilbert-base-uncased-emotion](https://huggingface.co/bhadresh-savani/distilbert-base-uncased-emotion) | 93.8 | 93.79 | 398.69 |
| [Bert-base-uncased-emotion](https://huggingface.co/bhadresh-savani/bert-base-uncased-emotion) | 94.05 | 94.06 | 190.152 |
| [Roberta-base-emotion](https://huggingface.co/bhadresh-savani/roberta-base-emotion) | 93.95 | 93.97| 195.639 |
| [Albert-base-v2-emotion](https://huggingface.co/bhadresh-savani/albert-base-v2-emotion) | 93.6 | 93.65 | 182.794 |
| [Electra-base-emotion](https://huggingface.co/bhadresh-savani/electra-base-emotion) | 91.95 | 91.90 | 472.72 |
## How to Use the model:
```python
from transformers import pipeline
classifier = pipeline("text-classification",model='bhadresh-savani/electra-base-emotion', return_all_scores=True)
prediction = classifier("I love using transformers. The best part is wide range of support and its easy to use", )
print(prediction)
"""
Output:
[[
{'label': 'sadness', 'score': 0.0006792712374590337},
{'label': 'joy', 'score': 0.9959300756454468},
{'label': 'love', 'score': 0.0009452480007894337},
{'label': 'anger', 'score': 0.0018055217806249857},
{'label': 'fear', 'score': 0.00041110432357527316},
{'label': 'surprise', 'score': 0.0002288572577526793}
]]
"""
```
## Dataset:
[Twitter-Sentiment-Analysis](https://huggingface.co/nlp/viewer/?dataset=emotion).
## Training procedure
[Colab Notebook](https://github.com/bhadreshpsavani/ExploringSentimentalAnalysis/blob/main/SentimentalAnalysisWithDistilbert.ipynb)
## Eval results
```json
{
'epoch': 8.0,
'eval_accuracy': 0.9195,
'eval_f1': 0.918975455617076,
'eval_loss': 0.3486028015613556,
'eval_runtime': 4.2308,
'eval_samples_per_second': 472.726,
'eval_steps_per_second': 7.564
}
```
## Reference:
* [Natural Language Processing with Transformer By Lewis Tunstall, Leandro von Werra, Thomas Wolf](https://learning.oreilly.com/library/view/natural-language-processing/9781098103231/) |