--- language: - en thumbnail: https://avatars3.githubusercontent.com/u/32437151?s=460&u=4ec59abc8d21d5feea3dab323d23a5860e6996a4&v=4 tags: - text-classification - emotion - pytorch license: apache-2.0 datasets: - emotion metrics: - Accuracy, F1 Score model-index: - name: bhadresh-savani/electra-base-emotion results: - task: type: text-classification name: Text Classification dataset: name: emotion type: emotion config: default split: test metrics: - name: Accuracy type: accuracy value: 0.9265 verified: true - name: Precision Macro type: precision value: 0.911532655431019 verified: true - name: Precision Micro type: precision value: 0.9265 verified: true - name: Precision Weighted type: precision value: 0.9305456360257519 verified: true - name: Recall Macro type: recall value: 0.8536923122511134 verified: true - name: Recall Micro type: recall value: 0.9265 verified: true - name: Recall Weighted type: recall value: 0.9265 verified: true - name: F1 Macro type: f1 value: 0.8657529340483895 verified: true - name: F1 Micro type: f1 value: 0.9265 verified: true - name: F1 Weighted type: f1 value: 0.924844632421077 verified: true - name: loss type: loss value: 0.3268870413303375 verified: true --- # Electra-base-emotion ## Model description: ## Model Performance Comparision on Emotion Dataset from Twitter: | Model | Accuracy | F1 Score | Test Sample per Second | | --- | --- | --- | --- | | [Distilbert-base-uncased-emotion](https://huggingface.co/bhadresh-savani/distilbert-base-uncased-emotion) | 93.8 | 93.79 | 398.69 | | [Bert-base-uncased-emotion](https://huggingface.co/bhadresh-savani/bert-base-uncased-emotion) | 94.05 | 94.06 | 190.152 | | [Roberta-base-emotion](https://huggingface.co/bhadresh-savani/roberta-base-emotion) | 93.95 | 93.97| 195.639 | | [Albert-base-v2-emotion](https://huggingface.co/bhadresh-savani/albert-base-v2-emotion) | 93.6 | 93.65 | 182.794 | | [Electra-base-emotion](https://huggingface.co/bhadresh-savani/electra-base-emotion) | 91.95 | 91.90 | 472.72 | ## How to Use the model: ```python from transformers import pipeline classifier = pipeline("text-classification",model='bhadresh-savani/electra-base-emotion', return_all_scores=True) prediction = classifier("I love using transformers. The best part is wide range of support and its easy to use", ) print(prediction) """ Output: [[ {'label': 'sadness', 'score': 0.0006792712374590337}, {'label': 'joy', 'score': 0.9959300756454468}, {'label': 'love', 'score': 0.0009452480007894337}, {'label': 'anger', 'score': 0.0018055217806249857}, {'label': 'fear', 'score': 0.00041110432357527316}, {'label': 'surprise', 'score': 0.0002288572577526793} ]] """ ``` ## Dataset: [Twitter-Sentiment-Analysis](https://huggingface.co/nlp/viewer/?dataset=emotion). ## Training procedure [Colab Notebook](https://github.com/bhadreshpsavani/ExploringSentimentalAnalysis/blob/main/SentimentalAnalysisWithDistilbert.ipynb) ## Eval results ```json { 'epoch': 8.0, 'eval_accuracy': 0.9195, 'eval_f1': 0.918975455617076, 'eval_loss': 0.3486028015613556, 'eval_runtime': 4.2308, 'eval_samples_per_second': 472.726, 'eval_steps_per_second': 7.564 } ``` ## Reference: * [Natural Language Processing with Transformer By Lewis Tunstall, Leandro von Werra, Thomas Wolf](https://learning.oreilly.com/library/view/natural-language-processing/9781098103231/)