--- library_name: peft license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased-lora-text-classification results: [] --- # distilbert-base-uncased-lora-text-classification This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8405 - Accuracy: {'accuracy': 0.898} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:-------------------:| | No log | 1.0 | 250 | 0.7051 | {'accuracy': 0.761} | | 0.4561 | 2.0 | 500 | 0.9751 | {'accuracy': 0.793} | | 0.4561 | 3.0 | 750 | 0.4668 | {'accuracy': 0.882} | | 0.2196 | 4.0 | 1000 | 0.5190 | {'accuracy': 0.895} | | 0.2196 | 5.0 | 1250 | 0.6079 | {'accuracy': 0.905} | | 0.0804 | 6.0 | 1500 | 0.7639 | {'accuracy': 0.895} | | 0.0804 | 7.0 | 1750 | 0.8768 | {'accuracy': 0.892} | | 0.0119 | 8.0 | 2000 | 0.8436 | {'accuracy': 0.893} | | 0.0119 | 9.0 | 2250 | 0.8417 | {'accuracy': 0.897} | | 0.001 | 10.0 | 2500 | 0.8405 | {'accuracy': 0.898} | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.20.3