Upload 12 files
Browse files- 1_Pooling/config.json +7 -0
- README.md +43 -84
- config.json +37 -0
- config_sentence_transformers.json +9 -0
- eval/similarity_evaluation_sts-dev_results.csv +15 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +66 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
README.md
CHANGED
@@ -1,24 +1,16 @@
|
|
1 |
---
|
|
|
2 |
pipeline_tag: sentence-similarity
|
3 |
tags:
|
4 |
- sentence-transformers
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
7 |
- transformers
|
8 |
-
datasets:
|
9 |
-
- kornlu
|
10 |
-
language:
|
11 |
-
- ko
|
12 |
-
license: cc-by-4.0
|
13 |
-
---
|
14 |
|
15 |
-
|
16 |
|
17 |
-
|
18 |
-
1. NLI 데이터셋을 통해 nagative sampling 후 MultipleNegativeRankingLoss 활용 및 STS 데이터셋을 통해 CosineSimilarityLoss를 활용하여 Multi-task Learning 학습 10epoch 진행
|
19 |
-
2. Learning Rate를 1e-06으로 줄여서 4epoch 추가 Multi-task 학습 진행
|
20 |
|
21 |
-
---
|
22 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
23 |
|
24 |
<!--- Describe your model here -->
|
@@ -37,7 +29,7 @@ Then you can use the model like this:
|
|
37 |
from sentence_transformers import SentenceTransformer
|
38 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
39 |
|
40 |
-
model = SentenceTransformer(
|
41 |
embeddings = model.encode(sentences)
|
42 |
print(embeddings)
|
43 |
```
|
@@ -63,8 +55,8 @@ def mean_pooling(model_output, attention_mask):
|
|
63 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
64 |
|
65 |
# Load model from HuggingFace Hub
|
66 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
67 |
-
model = AutoModel.from_pretrained(
|
68 |
|
69 |
# Tokenize sentences
|
70 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
@@ -81,102 +73,69 @@ print(sentence_embeddings)
|
|
81 |
```
|
82 |
|
83 |
|
84 |
-
## Evaluation Results
|
85 |
-
|
86 |
-
<!--- Describe how your model was evaluated -->
|
87 |
-
|
88 |
-
KorSTS 평가 데이터셋으로 평가한 결과입니다.
|
89 |
-
|
90 |
-
- Cosine Pearson: 85.77
|
91 |
-
- Cosine Spearman: 86.30
|
92 |
-
- Manhattan Pearson: 84.84
|
93 |
-
- Manhattan Spearman: 85.33
|
94 |
-
- Euclidean Pearson: 84.82
|
95 |
-
- Euclidean Spearman: 85.29
|
96 |
-
- Dot Pearson: 83.19
|
97 |
-
- Dot Spearman: 83.19
|
98 |
-
|
99 |
-
<br>
|
100 |
-
|
101 |
-
|model|cosine_pearson|cosine_spearman|euclidean_pearson|euclidean_spearman|manhattan_pearson|manhattan_spearman|dot_pearson|dot_spearman|
|
102 |
-
|:-------------------------|-----------------:|------------------:|--------------------:|---------------------:|--------------------:|---------------------:|--------------:|---------------:|
|
103 |
-
|[**gmatrix-embedding**](https://huggingface.co/bi-matrix/gmatrix-embedding)|**85.77**|**86.30**|**84.82**|**85.29**|**84.84**|**85.33**|**83.19**|**83.19**|
|
104 |
-
|[kf-deberta-multitask](https://huggingface.co/upskyy/kf-deberta-multitask)|85.75|86.25|84.79|85.25|84.80|85.27|82.93|82.86|
|
105 |
-
|[ko-sroberta-multitask](https://huggingface.co/jhgan/ko-sroberta-multitask)|84.77|85.6|83.71|84.40|83.70|84.38|82.42|82.33|
|
106 |
-
|[ko-sbert-multitask](https://huggingface.co/jhgan/ko-sbert-multitask)|84.13|84.71|82.42|82.66|82.41|82.69|80.05|79.69|
|
107 |
-
|[ko-sroberta-base-nli](https://huggingface.co/jhgan/ko-sroberta-nli)|82.83|83.85|82.87|83.29|82.88|83.28|80.34|79.69|
|
108 |
-
|[ko-sbert-nli](https://huggingface.co/jhgan/ko-sbert-multitask)|82.24|83.16|82.19|82.31|82.18|82.3|79.3|78.78|
|
109 |
-
|[ko-sroberta-sts](https://huggingface.co/jhgan/ko-sroberta-sts)|81.84|81.82|81.15|81.25|81.14|81.25|79.09|78.54|
|
110 |
-
|[ko-sbert-sts](https://huggingface.co/jhgan/ko-sbert-sts)|81.55|81.23|79.94|79.79|79.9|79.75|76.02|75.31|
|
111 |
-
|
112 |
-
<br>
|
113 |
|
|
|
114 |
|
115 |
<!--- Describe how your model was evaluated -->
|
116 |
|
117 |
-
|
118 |
-
사람 3명이서 0~5점으로 두 문장간의 유사도를 측정하여 점수를 내고 평균을 구하여 각 모델의 임베딩값을 통해
|
119 |
-
|
120 |
-
코사인 유사도, 유클리디안 거리, 맨하탄 거리, Dot-product를 구하여 피어슨, 스피어만 상관계수를 구한 값입니다.
|
121 |
-
|
122 |
-
- Cosine Pearson: 75.86
|
123 |
-
- Cosine Spearman: 65.75
|
124 |
-
- Manhattan Pearson: 72.65
|
125 |
-
- Manhattan Spearman: 65.20
|
126 |
-
- Euclidean Pearson: 72.48
|
127 |
-
- Euclidean Spearman: 65.32
|
128 |
-
- Dot Pearson: 64.71
|
129 |
-
- Dot Spearman: 53.90
|
130 |
-
|
131 |
-
<br>
|
132 |
|
133 |
-
model|cosine_pearson|cosine_spearman|euclidean_pearson|euclidean_spearman|manhattan_pearson|manhattan_spearman|dot_pearson|dot_spearman|
|
134 |
-
|:-------------------------|-----------------:|------------------:|--------------------:|---------------------:|--------------------:|---------------------:|--------------:|---------------:|
|
135 |
-
|[**gmatrix-embedding**](https://huggingface.co/bi-matrix/gmatrix-embedding)|**75.86**|**65.75**|**72.65**|**65.20**|**72.48**|**65.32**|**64.71**|**53.90**|
|
136 |
-
|[ko-sroberta-multitask](https://huggingface.co/jhgan/ko-sroberta-multitask)|71.78|63.16|70.80|63.47|70.89|63.72|53.57|44.23|
|
137 |
-
|[bge-m3](https://huggingface.co/BAAI/bge-m3)|64.15|60.65|61.88|60.68|61.88|60.19|64.16|60.71|
|
138 |
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-

|
144 |
-
|
145 |
-
<br>
|
146 |
|
147 |
-
|
148 |
-
1. 두 문장의 유사한 정도를 보고 0~5점으로 판단
|
149 |
-
2. 맞춤법, 띄어쓰기, 온점이나 쉼표 차이는 판단 대상이 아님
|
150 |
-
3. 문장의 의도, 표현이 담고 있는 의미를 비교
|
151 |
-
4. 두 문장에 공통적으로 사용된 단어의 유무를 찾는 것이 아닌, 문장의 의미가 유사한지를 비교
|
152 |
-
5. 0은 의미적 유사성이 없는 경우이고, 5는 의미적으로 동등함을 뜻함
|
153 |
|
|
|
|
|
|
|
|
|
154 |
|
|
|
155 |
|
156 |
-
|
157 |
-
|
|
|
|
|
158 |
|
159 |
**DataLoader**:
|
160 |
|
161 |
-
`torch.utils.data.dataloader.DataLoader` of length
|
162 |
```
|
163 |
-
{'batch_size':
|
164 |
```
|
165 |
|
166 |
**Loss**:
|
167 |
|
168 |
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
|
169 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
|
171 |
## Full Model Architecture
|
172 |
```
|
173 |
SentenceTransformer(
|
174 |
-
(0): Transformer({'max_seq_length': 128, 'do_lower_case':
|
175 |
-
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
176 |
)
|
177 |
```
|
178 |
|
179 |
## Citing & Authors
|
180 |
|
181 |
-
<!--- Describe where people can find more information -->
|
182 |
-
[MINSANG SONG] at [BI-Matrix](https://www.bimatrix.co.kr/)
|
|
|
1 |
---
|
2 |
+
library_name: sentence-transformers
|
3 |
pipeline_tag: sentence-similarity
|
4 |
tags:
|
5 |
- sentence-transformers
|
6 |
- feature-extraction
|
7 |
- sentence-similarity
|
8 |
- transformers
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
---
|
11 |
|
12 |
+
# {MODEL_NAME}
|
|
|
|
|
13 |
|
|
|
14 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
15 |
|
16 |
<!--- Describe your model here -->
|
|
|
29 |
from sentence_transformers import SentenceTransformer
|
30 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
31 |
|
32 |
+
model = SentenceTransformer('{MODEL_NAME}')
|
33 |
embeddings = model.encode(sentences)
|
34 |
print(embeddings)
|
35 |
```
|
|
|
55 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
56 |
|
57 |
# Load model from HuggingFace Hub
|
58 |
+
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
|
59 |
+
model = AutoModel.from_pretrained('{MODEL_NAME}')
|
60 |
|
61 |
# Tokenize sentences
|
62 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
73 |
```
|
74 |
|
75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
+
## Evaluation Results
|
78 |
|
79 |
<!--- Describe how your model was evaluated -->
|
80 |
|
81 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
+
## Training
|
85 |
+
The model was trained with the parameters:
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
+
**DataLoader**:
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
+
`sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 4442 with parameters:
|
90 |
+
```
|
91 |
+
{'batch_size': 128}
|
92 |
+
```
|
93 |
|
94 |
+
**Loss**:
|
95 |
|
96 |
+
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
|
97 |
+
```
|
98 |
+
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
|
99 |
+
```
|
100 |
|
101 |
**DataLoader**:
|
102 |
|
103 |
+
`torch.utils.data.dataloader.DataLoader` of length 719 with parameters:
|
104 |
```
|
105 |
+
{'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
106 |
```
|
107 |
|
108 |
**Loss**:
|
109 |
|
110 |
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
|
111 |
|
112 |
+
Parameters of the fit()-Method:
|
113 |
+
```
|
114 |
+
{
|
115 |
+
"epochs": 4,
|
116 |
+
"evaluation_steps": 1000,
|
117 |
+
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
|
118 |
+
"max_grad_norm": 1.0,
|
119 |
+
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
|
120 |
+
"optimizer_params": {
|
121 |
+
"lr": 1e-06
|
122 |
+
},
|
123 |
+
"scheduler": "WarmupLinear",
|
124 |
+
"steps_per_epoch": null,
|
125 |
+
"warmup_steps": 288,
|
126 |
+
"weight_decay": 0.01
|
127 |
+
}
|
128 |
+
```
|
129 |
+
|
130 |
|
131 |
## Full Model Architecture
|
132 |
```
|
133 |
SentenceTransformer(
|
134 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DebertaV2Model
|
135 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
136 |
)
|
137 |
```
|
138 |
|
139 |
## Citing & Authors
|
140 |
|
141 |
+
<!--- Describe where people can find more information -->
|
|
config.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "upskyy/kf-deberta-multitask",
|
3 |
+
"architectures": [
|
4 |
+
"DebertaV2Model"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"conv_act": "gelu",
|
8 |
+
"conv_kernel_size": 0,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-07,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"max_relative_positions": -1,
|
17 |
+
"model_type": "deberta-v2",
|
18 |
+
"norm_rel_ebd": "layer_norm",
|
19 |
+
"num_attention_heads": 12,
|
20 |
+
"num_hidden_layers": 12,
|
21 |
+
"pad_token_id": 0,
|
22 |
+
"pooler_dropout": 0,
|
23 |
+
"pooler_hidden_act": "gelu",
|
24 |
+
"pooler_hidden_size": 768,
|
25 |
+
"pos_att_type": [
|
26 |
+
"p2c",
|
27 |
+
"c2p"
|
28 |
+
],
|
29 |
+
"position_biased_input": false,
|
30 |
+
"position_buckets": 256,
|
31 |
+
"relative_attention": true,
|
32 |
+
"share_att_key": true,
|
33 |
+
"torch_dtype": "float32",
|
34 |
+
"transformers_version": "4.41.0",
|
35 |
+
"type_vocab_size": 0,
|
36 |
+
"vocab_size": 130000
|
37 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.2.2",
|
4 |
+
"transformers": "4.36.1",
|
5 |
+
"pytorch": "1.11.0"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null
|
9 |
+
}
|
eval/similarity_evaluation_sts-dev_results.csv
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
|
2 |
+
0,1000,0.87424182724437,0.873113883627151,0.8626342456499717,0.8683649687856948,0.862234101221366,0.8679090218497976,0.8420911984535485,0.8388683728199267
|
3 |
+
0,-1,0.8704544232547093,0.8711604107071151,0.8618454435894635,0.8664964585911143,0.8613477153921905,0.8661491861079217,0.8390755643453752,0.8367505848740203
|
4 |
+
1,1000,0.8653159391248947,0.8658128143759094,0.8583427277521668,0.8636325864952359,0.8577919927964012,0.8632203032907328,0.8320704397644403,0.8285392001745013
|
5 |
+
1,-1,0.8664721939672407,0.867188827810382,0.8574375558592068,0.8622162330750675,0.8572350229431882,0.8620521245434254,0.8304817808652534,0.8276482440404608
|
6 |
+
2,1000,0.8714413815604427,0.8728773176225486,0.8606519719208473,0.8661686113883175,0.8597764457766773,0.8650461871211873,0.8402147325095083,0.8390394174225602
|
7 |
+
2,-1,0.8705943005027337,0.8702975560007158,0.8607474787071386,0.866365162116999,0.8600589682539279,0.8655968405285576,0.8314075606364041,0.8294845620402314
|
8 |
+
3,1000,0.8732898338039496,0.8727113406361378,0.8618326659582233,0.867660640894365,0.8609977907811955,0.866602343006294,0.836684284412931,0.8344851740499123
|
9 |
+
3,-1,0.8706550381317323,0.8703280791541039,0.8594185149543394,0.8655157123583306,0.858653349453231,0.8647258505997637,0.8309840916492293,0.8295422738240362
|
10 |
+
4,1000,0.8704857775744986,0.8704915027579151,0.8587016084316031,0.8650513081211857,0.8579561230558775,0.8640968092375928,0.8350023458985515,0.8333924241815882
|
11 |
+
4,-1,0.8711526078122271,0.8711521971781401,0.8595390375115806,0.8659608852653925,0.858776265520779,0.8649677155364356,0.8349352221295189,0.8333007621962971
|
12 |
+
0,-1,0.8763115872556583,0.8761023572835317,0.8669522940489013,0.8720087690155365,0.8663943699721328,0.8712943539266835,0.8412022905614112,0.8384612426442756
|
13 |
+
1,-1,0.8763205288075023,0.8760076739421485,0.8662215668559664,0.8714828451613065,0.8656997872065376,0.8709107415595765,0.8417178065990268,0.8393132450146403
|
14 |
+
2,-1,0.8764778415959709,0.8761420637174745,0.8666452983853821,0.8718069663837321,0.8661081380378363,0.8711184783592194,0.8417928269640543,0.8392738072648638
|
15 |
+
3,-1,0.8761662401985245,0.8758175528104466,0.8664189381023497,0.8715279651845382,0.865886230191413,0.8709402326833412,0.8416127232242585,0.838971926272541
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:905ee97ae34c07044a3af264c045fc33c4663025153db50bfe0049a765b41957
|
3 |
+
size 741185640
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 128,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "[CLS]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "[SEP]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "[MASK]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "[PAD]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "[SEP]",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "[UNK]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "[CLS]",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "[CLS]",
|
47 |
+
"do_basic_tokenize": true,
|
48 |
+
"do_lower_case": false,
|
49 |
+
"eos_token": "[SEP]",
|
50 |
+
"mask_token": "[MASK]",
|
51 |
+
"max_length": 128,
|
52 |
+
"model_max_length": 512,
|
53 |
+
"never_split": null,
|
54 |
+
"pad_to_multiple_of": null,
|
55 |
+
"pad_token": "[PAD]",
|
56 |
+
"pad_token_type_id": 0,
|
57 |
+
"padding_side": "right",
|
58 |
+
"sep_token": "[SEP]",
|
59 |
+
"stride": 0,
|
60 |
+
"strip_accents": null,
|
61 |
+
"tokenize_chinese_chars": true,
|
62 |
+
"tokenizer_class": "BertTokenizer",
|
63 |
+
"truncation_side": "right",
|
64 |
+
"truncation_strategy": "longest_first",
|
65 |
+
"unk_token": "[UNK]"
|
66 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|