Text Generation
Transformers
PyTorch
code
gpt2
custom_code
Eval Results
text-generation-inference
Inference Endpoints
File size: 7,956 Bytes
96a5500
bca2f60
96a5500
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bca2f60
 
96a5500
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bca2f60
 
96a5500
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bca2f60
 
96a5500
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bca2f60
 
96a5500
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bca2f60
 
96a5500
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bca2f60
 
96a5500
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bca2f60
 
96a5500
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bca2f60
 
96a5500
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bca2f60
 
96a5500
 
 
 
 
 
 
 
bca2f60
96a5500
fc6b64b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
---
license: other
language:
- code
programming_language: 
- Java
- JavaScript
- Python
pipeline_tag: text-generation
widget:
- text: 'def print_hello_world():'
  example_title: Hello world
  group: Python

model-index:
- name: SantaCoder
  results:
  - task:
      type: text-generation
    dataset:
      type: openai_humaneval
      name: HumanEval (Python)
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.0
      verified: false
    - name: pass@10
      type: pass@10
      value: 0.0
      verified: false
    - name: pass@100
      type: pass@100
      value: 0.0
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL HumanEval (Java)
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.0
      verified: false
    - name: pass@10
      type: pass@10
      value: 0.0
      verified: false
    - name: pass@100
      type: pass@100
      value: 0.0
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL HumanEval (JavaScript)
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.0
      verified: false
    - name: pass@10
      type: pass@10
      value: 0.0
      verified: false
    - name: pass@100
      type: pass@100
      value: 0.0
  - task:
      type: text-generation
    dataset:
      type: openai_humaneval
      name: MBPP (Python)
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.0
      verified: false
    - name: pass@10
      type: pass@10
      value: 0.0
      verified: false
    - name: pass@100
      type: pass@100
      value: 0.0
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL MBPP (Java)
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.0
      verified: false
    - name: pass@10
      type: pass@10
      value: 0.0
      verified: false
    - name: pass@100
      type: pass@100
      value: 0.0
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL MBPP (JavaScript)
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.0
      verified: false
    - name: pass@10
      type: pass@10
      value: 0.0
      verified: false
    - name: pass@100
      type: pass@100
      value: 0.0
  - task:
      type: text-generation
    dataset:
      type: loubnabnl/humaneval_infilling
      name: HumanEval FIM (Python)
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.0
      verified: false
    - name: pass@10
      type: pass@10
      value: 0.0
      verified: false
    - name: pass@100
      type: pass@100
      value: 0.0
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL HumanEval FIM (Java)
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.0
      verified: false
    - name: pass@10
      type: pass@10
      value: 0.0
      verified: false
    - name: pass@100
      type: pass@100
      value: 0.0
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL HumanEval FIM (JavaScript)
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.0
      verified: false
    - name: pass@10
      type: pass@10
      value: 0.0
      verified: false
    - name: pass@100
      type: pass@100
      value: 0.0
  - task:
      type: text-generation
    dataset:
      type: code_x_glue_ct_code_to_text
      name: CodeXGLUE code-to-text (Python)
    metrics:
    - name: BLEU
      type: bleu
      value: 0.0
      verified: false
---

# SantaCoder

![banner](https://huggingface.co/datasets/bigcode/admin/resolve/main/banner.png)

#  Table of Contents

1. [Model Summary](#model-summary)
2. [Use](#use)
3. [Limitations](#limitations)
4. [Training](#training)
5. [Citation](#citation)

# Model Summary

The SantaCoder models are a series of 1B parameter models trained on Python, Java, and JavaScript. They were trained on datasets with different filter parameters and with architecture and objective variations. The main model uses multi-query attention, was trained using near-deduplication and commnent-to-code ratio as filtering criteria and using the Fill-in-the-Middle objective.

- **Repository:** [bigcode/Megatron-LM](https://github.com/bigcode-project/Megatron-LM)
- **Project Website:** [bigcode-project.org]www.bigcode-project.org)
- **Paper:** [Coming soon]()
- **Point of Contact:** [[email protected]](mailto:[email protected])
- **Languages:** Python, Java, and JavaScript

|Model|Architecture|Objective|Filtering|
|:-|:-|:-|:-|:-|
|`mha`|MHA|AR + FIM| Base |
|`no-fim`| MQA | AR| Base |
|`fim`| MQA | AR + FIM | Base |
|`stars`| MQA | AR + FIM | GitHub stars |
|`fertility`| MQA | AR + FIM | Tokenizer fertility |
|`comments`| MQA | AR + FIM | Comment-to-code ratio |
|`dedup-alt`| MQA | AR + FIM | Stronger near-deduplication |
|`dedup-alt-comments`| MQA | AR + FIM | Stronger near-deduplication and comment-to-code ratio |

The `dedup-alt-comments` model is the best performing model and was trained twice as long as the others. This checkpoint is available here on the `main` 

# Use

## Intended use



**Feel free to share your generations in the Community tab!**

## How to use

### Generation
```python
# pip install -q transformers
from transformers import AutoModelForCausalLM, AutoTokenizer

checkpoint = "bigcode/santacoder"
device = "cuda" # for GPU usage or "cpu" for CPU usage

tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint, trust_remote_code=True).to()

inputs = tokenizer.encode("def print_hello_world():", return_tensors="pt").to(device)
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))
```

### Fill-in-the-middle
Fill-in-the-mid uses special tokens to identify the prefix/middle/suffic part of the input and output:

```python
input_text = "<fim-prefix>def print_hello_world():\n    <fim-suffix>\n    print("Hello world!")<fim-middle>
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))
```

### Load other checkpoints
We upload the checkpoint of each experiment to a seperate branch as well as the intermediate checkpoints as commits on the branches. You can load them with the `revision` flag:

```python
checkpoint = "bigcode/santacoder"
revision = "no-fim" # name of branch or commit hash

model = AutoModelForCausalLM.from_pretrained(checkpoint, revision=revision, trust_remote_code=True).to(device)
```

### Attribution

The pretraining dataset of the model was filtered for permissive licenses only. Nevertheless, the model can generate source code verbatim from the dataset which requires attribution. We provide a [search index](TODO) that let's you search through the pretraining data to identify where generated code came from and apply the proper attribution to your code.

# Limitations

The model has been trained on source code in Python, Java, and JavaScript. The predominant language in source is English although other languages are also present. As such the model is capable to generate code snippets provided some context but the generated code is not guaranteed to work as intended. It can be inefficient, contain bugs or exploits.

# Training

## Model

- **Architecture:** GPT-2 model with multi-query attention and Fill-in-the-Middle objective
- **Pretraining steps:** 600K
- **Pretraining tokens:** 236 billion
- **Precision:** float16

## Hardware

- **GPUs:** 96 Tesla V100
- **Training time:** 6.2 days
- **Total FLOPS:** 2.1 x 10e21

## Software

- **Orchestration:** [Megatron-LM](https://github.com/bigcode-project/Megatron-LM)
- **Neural networks:** [PyTorch](https://github.com/pytorch/pytorch)
- **FP16 if applicable:** [apex](https://github.com/NVIDIA/apex)


# Citation
**TODO**