Transformers
PyTorch
bloom
text-generation-inference
Inference Endpoints
Younes Belkada commited on
Commit
e738e39
·
1 Parent(s): cf5d924

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +574 -0
README.md ADDED
@@ -0,0 +1,574 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: bigscience-bloom-rail-1.0
3
+ language:
4
+ - ak
5
+ - ar
6
+ - as
7
+ - bm
8
+ - bn
9
+ - ca
10
+ - code
11
+ - en
12
+ - es
13
+ - eu
14
+ - fon
15
+ - fr
16
+ - gu
17
+ - hi
18
+ - id
19
+ - ig
20
+ - ki
21
+ - kn
22
+ - lg
23
+ - ln
24
+ - ml
25
+ - mr
26
+ - ne
27
+ - nso
28
+ - ny
29
+ - or
30
+ - pa
31
+ - pt
32
+ - rn
33
+ - rw
34
+ - sn
35
+ - st
36
+ - sw
37
+ - ta
38
+ - te
39
+ - tn
40
+ - ts
41
+ - tum
42
+ - tw
43
+ - ur
44
+ - vi
45
+ - wo
46
+ - xh
47
+ - yo
48
+ - zh
49
+ - zhs
50
+ - zht
51
+ - zu
52
+ ---
53
+
54
+ # <span style="color:red"><b>WARNING:</b> The checkpoints on this repo are not fully trained model. Evaluations of intermediary checkpoints and the final model will be added when conducted (see below).</span>
55
+
56
+ # <p>BLOOM LM<br/> _BigScience Large Open-science Open-access Multilingual Language Model_ <br/>Model Card</p>
57
+ <img src="https://assets.website-files.com/6139f3cdcbbff3a68486761d/613cd8997b270da063e230c5_Tekengebied%201-p-500.png" alt="BigScience Logo" width="200"/>
58
+
59
+
60
+ Version 1.3 / 4.July.2022 - Available intermediary checkpoints: TO ADD**
61
+
62
+
63
+
64
+ # Table of Contents
65
+ 1. [Model Details](#model-details)
66
+ 2. [Uses](#uses)
67
+ 3. [Training Data](#training-data)
68
+ 4. [Risks and Limitations](#risks-and-limitations)
69
+ 5. [Evaluation](#evaluation)
70
+ 6. [Recommendations](#recommendations)
71
+ 7. [Glossary and Calculations](#glossary-and-calculations)
72
+ 8. [More Information](#more-information)
73
+ 9. [Model Card Authors](#model-card-authors)
74
+
75
+ ---
76
+
77
+ # Model Details
78
+
79
+ BLOOM is a type of language model, which is a probability distribution over sequences of words. Specifically, BLOOM is a Large Language Model (LLM), meaning that it is trained on vast amounts of text data using industrial-scale computational resources. As such, the model is able to capture the statistical tendencies of words, phrases, sentences, and larger spans of text that it is exposed to in the training data.
80
+
81
+ ## Basics
82
+ *This section provides information about the model type, version, license, funders, release date, developers, and contact information.*
83
+ *It is useful for anyone who wants to reference the model.*
84
+
85
+ <details>
86
+ <summary>Click to expand</summary>
87
+
88
+ **Developed by:** BigScience ([website](https://bigscience.huggingface.co))
89
+
90
+ *All collaborators are either volunteers or have an agreement with their employer. (Further breakdown of participants forthcoming.)*
91
+
92
+ **Model Type:** Transformer-based Language Model
93
+
94
+ **Version:** 1.0.0
95
+
96
+ **Languages:** Multiple; see [training data](#training-data)
97
+
98
+ **License:** RAIL License v1.0 ([link](https://huggingface.co/spaces/bigscience/license))
99
+
100
+ **Release Date Estimate:** Monday, 11.July.2022
101
+
102
+ **Send Questions to:** [email protected]
103
+
104
+ **Cite as:** BigScience, _BigScience Language Open-science Open-access Multilingual (BLOOM) Language Model_. International, May 2021-May 2022
105
+
106
+ **Funded by:**
107
+
108
+ * The French government.
109
+
110
+ * Hugging Face ([website](https://huggingface.co)).
111
+
112
+ * Organizations of contributors. *(Further breakdown of organizations forthcoming.)*
113
+
114
+ </details>
115
+
116
+ ## Technical Specifications
117
+ *This section includes details about the model objective and architecture, and the compute infrastructure.*
118
+ *It is useful for people interested in model development.*
119
+
120
+ <details>
121
+ <summary>Click to expand</summary>
122
+
123
+ Please see [the BLOOM training README](https://github.com/bigscience-workshop/bigscience/tree/master/train/tr11-176B-ml#readme) for full details on replicating training.
124
+
125
+ ### Model Architecture and Objective
126
+
127
+ * Modified from Megatron-LM GPT2 (see [paper](https://arxiv.org/abs/1909.08053), [BLOOM Megatron code](https://github.com/bigscience-workshop/Megatron-DeepSpeed)):
128
+
129
+ * Decoder-only architecture
130
+
131
+ * Layer normalization applied to word embeddings layer (`StableEmbedding`; see [code](https://github.com/facebookresearch/bitsandbytes), [paper](https://arxiv.org/pdf/2110.02861.pdf))
132
+
133
+ * ALiBI positional encodings (see [paper](https://arxiv.org/pdf/2108.12409.pdf)), with GeLU activation functions
134
+
135
+ * 176 billion parameters:
136
+
137
+ * 70 layers, 112 attention heads
138
+
139
+ * Hidden layers are 14336-dimensional
140
+
141
+ * Sequence length of 2048 tokens used (see [BLOOM tokenizer](https://huggingface.co/bigscience/tokenizer), [tokenizer description](#tokenization))
142
+
143
+ **Objective Function:** Cross Entropy with mean reduction (see [API documentation](https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html#torch.nn.CrossEntropyLoss)).
144
+
145
+ ### Compute infrastructure
146
+ Jean Zay Public Supercomputer, provided by the French government (see [announcement](https://www.enseignementsup-recherche.gouv.fr/fr/signature-du-marche-d-acquisition-de-l-un-des-supercalculateurs-les-plus-puissants-d-europe-46733)).
147
+
148
+ #### Hardware
149
+
150
+ * 384 A100 80GB GPUs (48 nodes)
151
+
152
+ * Additional 32 A100 80GB GPUs (4 nodes) in reserve
153
+
154
+ * 8 GPUs per node Using NVLink 4 inter-gpu connects, 4 OmniPath links
155
+
156
+ * CPU: AMD
157
+
158
+ * CPU memory: 512GB per node
159
+
160
+ * GPU memory: 640GB per node
161
+
162
+ * Inter-node connect: Omni-Path Architecture (OPA)
163
+
164
+ * NCCL-communications network: a fully dedicated subnet
165
+
166
+ * Disc IO network: shared network with other types of nodes
167
+
168
+ #### Software
169
+
170
+ * Megatron-DeepSpeed ([Github link](https://github.com/bigscience-workshop/Megatron-DeepSpeed))
171
+
172
+ * DeepSpeed ([Github link](https://github.com/microsoft/DeepSpeed))
173
+
174
+ * PyTorch (pytorch-1.11 w/ CUDA-11.5; see [Github link](https://github.com/pytorch/pytorch))
175
+
176
+ * apex ([Github link](https://github.com/NVIDIA/apex))
177
+
178
+ </details>
179
+
180
+ ---
181
+
182
+ # Training
183
+ *This section provides information about the training data, the speed and size of training elements, and the environmental impact of training.*
184
+ *It is useful for people who want to learn more about the model inputs and training footprint.*
185
+
186
+ <details>
187
+ <summary>Click to expand</summary>
188
+
189
+ ## Training Data
190
+ *This section provides a high-level overview of the training data. It is relevant for anyone who wants to know the basics of what the model is learning.*
191
+
192
+ Details for each dataset are provided in individual [Data Cards](https://huggingface.co/spaces/bigscience/BigScienceCorpus).
193
+
194
+ Training data includes:
195
+
196
+ - 45 natural languages
197
+
198
+ - 12 programming languages
199
+
200
+ - In 1.5TB of pre-processed text, converted into 350B unique tokens (see [the tokenizer section](#tokenization) for more.)
201
+
202
+ ### Languages
203
+
204
+ The pie chart shows the distribution of languages in training data.
205
+
206
+ ![pie chart showing the distribution of languages in training data](https://github.com/bigscience-workshop/model_card/blob/main/assets/data/pie_chart.svg?raw=true)
207
+
208
+
209
+ The following tables shows the further distribution of Niger-Congo & Indic languages and programming languages in the training data.
210
+
211
+ Distribution of Niger Congo and Indic languages.
212
+
213
+ | Niger Congo | Percentage | | Indic | Percentage |
214
+ |----------------|------------ |------ |-----------|------------|
215
+ | Chi Tumbuka | 0.00002 | | Assamese | 0.01 |
216
+ | Kikuyu | 0.00004 | | Odia | 0.04 |
217
+ | Bambara | 0.00004 | | Gujarati | 0.04 |
218
+ | Akan | 0.00007 | | Marathi | 0.05 |
219
+ | Xitsonga | 0.00007 | | Punjabi | 0.05 |
220
+ | Sesotho | 0.00007 | | Kannada | 0.06 |
221
+ | Chi Chewa | 0.0001 | | Nepali | 0.07 |
222
+ | Setswana | 0.0002 | | Telugu | 0.09 |
223
+ | Northern Sotho | 0.0002 | | Malayalam | 0.10 |
224
+ | Fon | 0.0002 | | Urdu | 0.10 |
225
+ | Kirundi | 0.0003 | | Tamil | 0.20 |
226
+ | Wolof | 0.0004 | | Bengali | 0.50 |
227
+ | Kuganda | 0.0004 | | Hindi | 0.70 |
228
+ | Chi Shona | 0.001 |
229
+ | Isi Zulu | 0.001 |
230
+ | Igbo | 0.001 |
231
+ | Xhosa | 0.001 |
232
+ | Kinyarwanda | 0.003 |
233
+ | Yoruba | 0.006 |
234
+ | Swahili | 0.02 |
235
+
236
+ Distribution of programming languages.
237
+
238
+ | Extension | Language | Number of files |
239
+ |----------------|------------|-----------------|
240
+ | java | Java | 5,407,724 |
241
+ | php | PHP | 4,942,186 |
242
+ | cpp | C++ | 2,503,930 |
243
+ | py | Python | 2,435,072 |
244
+ | js | JavaScript | 1,905,518 |
245
+ | cs | C# | 1,577,347 |
246
+ | rb | Ruby | 6,78,413 |
247
+ | cc | C++ | 443,054 |
248
+ | hpp | C++ | 391,048 |
249
+ | lua | Lua | 352,317 |
250
+ | go | GO | 227,763 |
251
+ | ts | TypeScript | 195,254 |
252
+ | C | C | 134,537 |
253
+ | scala | Scala | 92,052 |
254
+ | hh | C++ | 67,161 |
255
+ | H | C++ | 55,899 |
256
+ | tsx | TypeScript | 33,107 |
257
+ | rs | Rust | 29,693 |
258
+ | phpt | PHP | 9,702 |
259
+ | c++ | C++ | 1,342 |
260
+ | h++ | C++ | 791 |
261
+ | php3 | PHP | 540 |
262
+ | phps | PHP | 270 |
263
+ | php5 | PHP | 166 |
264
+ | php4 | PHP | 29 |
265
+
266
+ ### Preprocessing
267
+
268
+ **Tokenization:** The BLOOM tokenizer ([link](https://huggingface.co/bigscience/tokenizer)), a learned subword tokenizer trained using:
269
+
270
+ - A byte-level Byte Pair Encoding (BPE) algorithm
271
+
272
+ - A simple pre-tokenization rule, no normalization
273
+
274
+ - A vocabulary size of 250,680
275
+
276
+ It was trained on a subset of a preliminary version of the corpus using alpha-weighting per language.
277
+
278
+ ## Speeds, Sizes, Times
279
+
280
+ Training logs: [Tensorboard link](https://huggingface.co/tensorboard/bigscience/tr11-176B-ml-logs/)
281
+
282
+ - Dates:
283
+
284
+ - Started 11th March, 2022 11:42am PST
285
+
286
+ - Estimated end: 5th July, 2022
287
+
288
+ - Checkpoint size:
289
+
290
+ - Bf16 weights: 329GB
291
+
292
+ - Full checkpoint with optimizer states: 2.3TB
293
+
294
+ - Training throughput: About 150 TFLOP per GPU per second
295
+
296
+ - Number of epochs: 1
297
+
298
+ - Estimated cost of training: Equivalent of $2-5M in cloud computing (including preliminary experiments)
299
+
300
+ - Server training location: Île-de-France, France
301
+
302
+
303
+ ## Environmental Impact
304
+
305
+ The training supercomputer, Jean Zay ([website](http://www.idris.fr/eng/jean-zay/jean-zay-presentation-eng.html)), uses mostly nuclear energy. The heat generated by it is reused for heating campus housing.
306
+
307
+ **Estimated carbon emissions:** *(Forthcoming.)*
308
+
309
+ **Estimated electricity usage:** *(Forthcoming.)*
310
+
311
+ </details>
312
+
313
+ ---
314
+
315
+ # Uses
316
+
317
+ *This section addresses questions around how the model is intended to be used, discusses the foreseeable users of the model (including those affected by the model), and describes uses that are considered out of scope or misuse of the model.*
318
+ *It is useful for anyone considering using the model or who is affected by the model.*
319
+
320
+ <details>
321
+ <summary>Click to expand</summary>
322
+
323
+ ## Intended Use
324
+
325
+ This model is being created in order to enable public research on large language models (LLMs). LLMs are intended to be used for language generation or as a pretrained base model that can be further fine-tuned for specific tasks. Use cases below are not exhaustive.
326
+
327
+ ### Direct Use
328
+
329
+ - Text generation
330
+
331
+ - Exploring characteristics of language generated by a language model
332
+
333
+ - Examples: Cloze tests, counterfactuals, generations with reframings
334
+
335
+ ### Downstream Use
336
+
337
+ - Tasks that leverage language models include: Information Extraction, Question Answering, Summarization
338
+
339
+ ### Misuse and Out-of-scope Use
340
+ *This section addresses what users ought not do with the model.*
341
+
342
+ See the [BLOOM License](https://huggingface.co/spaces/bigscience/license), Attachment A, for detailed usage restrictions. The below list is non-exhaustive, but lists some easily foreseeable problematic use cases.
343
+
344
+ #### Out-of-scope Uses
345
+
346
+ Using the model in [high-stakes](#high-stakes) settings is out of scope for this model. The model is not designed for [critical decisions](#critical-decisions) nor uses with any material consequences on an individual's livelihood or wellbeing. The model outputs content that appears factual but is not correct.
347
+
348
+ Out-of-scope Uses Include:
349
+
350
+ - Usage in biomedical domains, political and legal domains, or finance domains
351
+
352
+ - Usage for evaluating or scoring individuals, such as for employment, education, or credit
353
+
354
+ - Applying the model for critical automatic decisions, generating factual content, creating reliable summaries, or generating predictions that must be correct
355
+
356
+ #### Misuse
357
+
358
+ Intentionally using the model for harm, violating [human rights](#human-rights), or other kinds of malicious activities, is a misuse of this model. This includes:
359
+
360
+ - Spam generation
361
+
362
+ - Disinformation and influence operations
363
+
364
+ - Disparagement and defamation
365
+
366
+ - Harassment and abuse
367
+
368
+ - [Deception](#deception)
369
+
370
+ - Unconsented impersonation and imitation
371
+
372
+ - Unconsented surveillance
373
+
374
+ - Generating content without attribution to the model, as specified in the [RAIL License, Use Restrictions](https://huggingface.co/spaces/bigscience/license)
375
+
376
+ ## Intended Users
377
+
378
+ ### Direct Users
379
+
380
+ - General Public
381
+
382
+ - Researchers
383
+
384
+ - Students
385
+
386
+ - Educators
387
+
388
+ - Engineers/developers
389
+
390
+ - Non-commercial entities
391
+
392
+ - Community advocates, including human and civil rights groups
393
+
394
+ ### Indirect Users
395
+
396
+ - Users of derivatives created by Direct Users, such as those using software with an [intended use](#intended-use)
397
+
398
+ - Users of [Derivatives of the Model, as described in the License](https://huggingface.co/spaces/bigscience/license)
399
+
400
+ ### Others Affected (Parties Prenantes)
401
+
402
+ - People and groups referred to by the LLM
403
+
404
+ - People and groups exposed to outputs of, or decisions based on, the LLM
405
+
406
+ - People and groups whose original work is included in the LLM
407
+
408
+ </details>
409
+
410
+ ---
411
+
412
+ # Risks and Limitations
413
+ *This section identifies foreseeable harms and misunderstandings.*
414
+
415
+ <details>
416
+ <summary>Click to expand</summary>
417
+
418
+ Model may:
419
+
420
+ - Overrepresent some viewpoints and underrepresent others
421
+
422
+ - Contain stereotypes
423
+
424
+ - Contain [personal information](#personal-data-and-information)
425
+
426
+ - Generate:
427
+
428
+ - Hateful, abusive, or violent language
429
+
430
+ - Discriminatory or prejudicial language
431
+
432
+ - Content that may not be appropriate for all settings, including sexual content
433
+
434
+ - Make errors, including producing incorrect information as if it were factual
435
+
436
+ - Generate irrelevant or repetitive outputs
437
+
438
+ </details>
439
+
440
+ ---
441
+
442
+ # Evaluation
443
+ *This section describes the evaluation protocols and provides the results.*
444
+
445
+
446
+ <details>
447
+ <summary>Click to expand</summary>
448
+
449
+ ## Metrics
450
+ *This section describes the different ways performance is calculated and why.*
451
+
452
+
453
+ Includes:
454
+
455
+ | Metric | Why chosen |
456
+ |--------------------|--------------------------------------------------------------------|
457
+ | [Perplexity](#perplexity) | Standard metric for quantifying model improvements during training |
458
+ | Cross Entropy [Loss](#loss) | Standard objective for language models. |
459
+
460
+ And multiple different metrics for specific tasks. _(More evaluation metrics forthcoming upon completion of evaluation protocol.)_
461
+
462
+ ## Factors
463
+ *This section lists some different aspects of what BLOOM models. Its focus is on those aspects that are likely to give rise to high variance in model behavior.*
464
+
465
+ - Language, such as English or Yoruba
466
+
467
+ - Domain, such as newswire or stories
468
+
469
+ - Demographic characteristics, such as gender or nationality
470
+
471
+ ## Results
472
+ *Results are based on the [Factors](#factors) and [Metrics](#metrics).*
473
+
474
+ **Train-time Evaluation:**
475
+
476
+ As of 25.May.2022, 15:00 PST:
477
+
478
+ - Training Loss: 2.0
479
+
480
+ - Validation Loss: 2.2
481
+
482
+ - Perplexity: 8.9
483
+
484
+ (More evaluation scores forthcoming.)
485
+
486
+ </details>
487
+
488
+ ---
489
+
490
+ # Recommendations
491
+
492
+ *This section provides information on warnings and potential mitigations.*
493
+
494
+ <details>
495
+ <summary>Click to expand</summary>
496
+
497
+ - Indirect users should be made aware when the content they're working with is created by the LLM.
498
+
499
+ - Users should be aware of [Risks and Limitations](#risks-and-limitations), and include an appropriate age disclaimer or blocking interface as necessary.
500
+
501
+ - Models trained or finetuned downstream of BLOOM LM should include an updated Model Card.
502
+
503
+ - Users of the model should provide mechanisms for those affected to provide feedback, such as an email address for comments.
504
+
505
+ </details>
506
+
507
+ ---
508
+
509
+ # Glossary and Calculations
510
+
511
+ *This section defines common terms and how metrics are calculated.*
512
+ <details>
513
+ <summary>Click to expand</summary>
514
+
515
+ - <a name="loss">**Loss:**</a> A calculation of the difference between what the model has learned and what the data shows ("groundtruth"). The lower the loss, the better. The training process aims to minimize the loss.
516
+
517
+ - <a name="perplexity">**Perplexity:**</a> This is based on what the model estimates the probability of new data is. The lower the perplexity, the better. If the model is 100% correct at predicting the next token it will see, then the perplexity is 1. Mathematically this is calculated using entropy.
518
+
519
+ - <a name="high-stakes">**High-stakes settings:**</a> Such as those identified as "high-risk AI systems" and "unacceptable risk AI systems" in the European Union's proposed [Artificial Intelligence (AI) Act](https://artificialintelligenceact.eu/annexes/).
520
+
521
+ - <a name="critical-decisions">**Critical decisions:**</a> Such as those defined in [the United States' proposed Algorithmic Accountability Act](https://www.congress.gov/117/bills/s3572/BILLS-117s3572is.pdf).
522
+
523
+ - <a name="human-rights">**Human rights:**</a> Includes those rights defined in the [Universal Declaration of Human Rights](https://www.un.org/sites/un2.un.org/files/2021/03/udhr.pdf).
524
+
525
+ - <a name="personal-data-and-information">**Personal Data and Personal Information:**</a> Personal data and information is defined in multiple data protection regulations, such as "[personal data](https://gdpr-info.eu/issues/personal-data/)" in the [European Union's General Data Protection Regulation](https://gdpr-info.eu); and "personal information" in the Republic of South Africa's [Protection of Personal Information Act](https://www.gov.za/sites/default/files/gcis_document/201409/3706726-11act4of2013popi.pdf), The People's Republic of China's [Personal information protection law](http://en.npc.gov.cn.cdurl.cn/2021-12/29/c_694559.htm).
526
+
527
+ - <a name="sensitive-characteristics">**Sensitive characteristics:**</a> This includes specifically protected categories in human rights (see [UHDR, Article 2](https://www.un.org/sites/un2.un.org/files/2021/03/udhr.pdf)) and personal information regulation (see GDPR, [Article 9; Protection of Personal Information Act, Chapter 1](https://www.gov.za/sites/default/files/gcis_document/201409/3706726-11act4of2013popi.pdf))
528
+
529
+ - <a name="deception">**Deception:**</a> Doing something to intentionally mislead individuals to believe something that is false, such as by creating deadbots or chatbots on social media posing as real people, or generating text documents without making consumers aware that the text is machine generated.
530
+
531
+ </details>
532
+
533
+ ---
534
+
535
+ # More Information
536
+ *This section provides links to writing on dataset creation, technical specifications, lessons learned, and initial results.*
537
+
538
+ <details>
539
+ <summary>Click to expand</summary>
540
+
541
+ ## Dataset Creation
542
+
543
+ Blog post detailing the design choices during the dataset creation: https://bigscience.huggingface.co/blog/building-a-tb-scale-multilingual-dataset-for-language-modeling
544
+
545
+ ## Technical Specifications
546
+
547
+ Blog post summarizing how the architecture, size, shape, and pre-training duration where selected: https://bigscience.huggingface.co/blog/what-language-model-to-train-if-you-have-two-million-gpu-hours
548
+
549
+ More details on the architecture/optimizer: https://github.com/bigscience-workshop/bigscience/tree/master/train/tr11-176B-ml
550
+
551
+ Blog post on the hardware/engineering side: https://bigscience.huggingface.co/blog/which-hardware-to-train-a-176b-parameters-model
552
+
553
+ Details on the distributed setup used for the training: https://github.com/bigscience-workshop/bigscience/tree/master/train/tr11-176B-ml
554
+
555
+ Tensorboard updated during the training: https://huggingface.co/bigscience/tr11-176B-ml-logs/tensorboard#scalars&tagFilter=loss
556
+
557
+ ## Lessons
558
+
559
+ Insights on how to approach training, negative results: https://github.com/bigscience-workshop/bigscience/blob/master/train/lessons-learned.md
560
+
561
+ Details on the obstacles overcome during the preparation on the engineering side (instabilities, optimization of training throughput, so many technical tricks and questions): https://github.com/bigscience-workshop/bigscience/blob/master/train/tr11-176B-ml/chronicles.md
562
+
563
+ ## Initial Results
564
+
565
+ Initial prompting experiments using interim checkpoints: https://huggingface.co/spaces/bigscience/bloom-book
566
+
567
+ </details>
568
+
569
+ ---
570
+
571
+ # Model Card Authors
572
+ *Ordered roughly chronologically and by amount of time spent.*
573
+
574
+ Margaret Mitchell, Giada Pistilli, Yacine Jernite, Ezinwanne Ozoani, Marissa Gerchick, Nazneen Rajani, Sasha Luccioni, Irene Solaiman, Maraim Masoud, Somaieh Nikpoor, Carlos Muñoz Ferrandis, Stas Bekman, Christopher Akiki, Danish Contractor, David Lansky, Angelina McMillan-Major, Tristan Thrush, Suzana Ilić, Gérard Dupont, Shayne Longpre, Manan Dey, Stella Biderman, Douwe Kiela, Emi Baylor, Teven Le Scao, Aaron Gokaslan, Julien Launay