File size: 26,201 Bytes
59290ca 028d295 59290ca a75cdc0 27464b7 99b17ec 05d6b62 f6e005a 05d6b62 f6e005a 05d6b62 f6e005a 05d6b62 f6e005a 05d6b62 f6e005a 05d6b62 f6e005a 05d6b62 f6e005a 05d6b62 f6e005a 05d6b62 f6e005a 05d6b62 f6e005a 05d6b62 f6e005a 05d6b62 f6e005a 05d6b62 f6e005a 05d6b62 f6e005a 05d6b62 f6e005a 05d6b62 f6e005a 05d6b62 f6e005a 05d6b62 f6e005a 05d6b62 f6e005a 05d6b62 f6e005a 05d6b62 f6e005a 05d6b62 f6e005a 05d6b62 f6e005a 05d6b62 f6e005a 05d6b62 f6e005a 05d6b62 f6e005a 05d6b62 f6e005a 05d6b62 928e9ab f6e005a 05d6b62 f6e005a 05d6b62 f6e005a 05d6b62 f6e005a 05d6b62 f6e005a 05d6b62 f6e005a 05d6b62 f6e005a 05d6b62 f6e005a 05d6b62 f6e005a 05d6b62 f6e005a 05d6b62 f6e005a 05d6b62 f6e005a 05d6b62 f6e005a 05d6b62 f6e005a 05d6b62 f6e005a 05d6b62 f6e005a 05d6b62 f6e005a 05d6b62 f6e005a 05d6b62 f6e005a 05d6b62 f6e005a 05d6b62 f6e005a 05d6b62 f6e005a 05d6b62 f6e005a 05d6b62 f6e005a 05d6b62 59290ca fd4a9a8 028d295 59290ca 44f3fe5 028d295 44f3fe5 028d295 59290ca 028d295 59290ca 4d349c9 59290ca 028d295 44f3fe5 028d295 b21a48a 65566d0 b21a48a dab3029 b21a48a dab3029 b21a48a dab3029 b21a48a 65566d0 b21a48a 028d295 8b95958 028d295 8b95958 028d295 8b95958 028d295 8b95958 028d295 8b95958 028d295 8b95958 59290ca 44f3fe5 f0d4457 44f3fe5 59290ca 44f3fe5 59290ca 44f3fe5 59290ca 44f3fe5 59290ca 44f3fe5 29e57a5 59290ca 44f3fe5 59290ca 44f3fe5 59290ca 44f3fe5 59290ca 44f3fe5 59290ca 44f3fe5 59290ca 4cb792b 59290ca f0d4457 44f3fe5 8c53520 44f3fe5 8c53520 ad0c46c 8c53520 44f3fe5 8c53520 44f3fe5 59290ca 81d56cf 59290ca 44f3fe5 59290ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 |
---
datasets:
- bigscience/xP3
license: bigscience-bloom-rail-1.0
language:
- ak
- ar
- as
- bm
- bn
- ca
- code
- en
- es
- eu
- fon
- fr
- gu
- hi
- id
- ig
- ki
- kn
- lg
- ln
- ml
- mr
- ne
- nso
- ny
- or
- pa
- pt
- rn
- rw
- sn
- st
- sw
- ta
- te
- tn
- ts
- tum
- tw
- ur
- vi
- wo
- xh
- yo
- zh
- zu
programming_language:
- C
- C++
- C#
- Go
- Java
- JavaScript
- Lua
- PHP
- Python
- Ruby
- Rust
- Scala
- TypeScript
pipeline_tag: text-generation
widget:
- text: "一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。Would you rate the previous review as positive, neutral or negative?"
example_title: "zh-en sentiment"
- text: "一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。你认为这句话的立场是赞扬、中立还是批评?"
example_title: "zh-zh sentiment"
- text: "Suggest at least five related search terms to \"Mạng neural nhân tạo\"."
example_title: "vi-en query"
- text: "Proposez au moins cinq mots clés concernant «Réseau de neurones artificiels»."
example_title: "fr-fr query"
- text: "Explain in a sentence in Telugu what is backpropagation in neural networks."
example_title: "te-en qa"
- text: "Why is the sky blue?"
example_title: "en-en qa"
- text: "Write a fairy tale about a troll saving a princess from a dangerous dragon. The fairy tale is a masterpiece that has achieved praise worldwide and its moral is \"Heroes Come in All Shapes and Sizes\". Story (in Spanish):"
example_title: "es-en fable"
- text: "Write a fable about wood elves living in a forest that is suddenly invaded by ogres. The fable is a masterpiece that has achieved praise worldwide and its moral is \"Violence is the last refuge of the incompetent\". Fable (in Hindi):"
example_title: "hi-en fable"
model-index:
- name: bloomz
results:
- task:
type: Coreference resolution
dataset:
type: winogrande
name: Winogrande XL (xl)
config: xl
split: validation
revision: a80f460359d1e9a67c006011c94de42a8759430c
metrics:
- type: Accuracy
value: 59.27
- task:
type: Coreference resolution
dataset:
type: Muennighoff/xwinograd
name: XWinograd (en)
config: en
split: test
revision: 9dd5ea5505fad86b7bedad667955577815300cee
metrics:
- type: Accuracy
value: 69.08
- task:
type: Coreference resolution
dataset:
type: Muennighoff/xwinograd
name: XWinograd (fr)
config: fr
split: test
revision: 9dd5ea5505fad86b7bedad667955577815300cee
metrics:
- type: Accuracy
value: 68.67
- task:
type: Coreference resolution
dataset:
type: Muennighoff/xwinograd
name: XWinograd (jp)
config: jp
split: test
revision: 9dd5ea5505fad86b7bedad667955577815300cee
metrics:
- type: Accuracy
value: 59.65
- task:
type: Coreference resolution
dataset:
type: Muennighoff/xwinograd
name: XWinograd (pt)
config: pt
split: test
revision: 9dd5ea5505fad86b7bedad667955577815300cee
metrics:
- type: Accuracy
value: 64.26
- task:
type: Coreference resolution
dataset:
type: Muennighoff/xwinograd
name: XWinograd (ru)
config: ru
split: test
revision: 9dd5ea5505fad86b7bedad667955577815300cee
metrics:
- type: Accuracy
value: 60.95
- task:
type: Coreference resolution
dataset:
type: Muennighoff/xwinograd
name: XWinograd (zh)
config: zh
split: test
revision: 9dd5ea5505fad86b7bedad667955577815300cee
metrics:
- type: Accuracy
value: 70.24
- task:
type: Natural language inference
dataset:
type: anli
name: ANLI (r1)
config: r1
split: validation
revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094
metrics:
- type: Accuracy
value: 48.6
- task:
type: Natural language inference
dataset:
type: anli
name: ANLI (r2)
config: r2
split: validation
revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094
metrics:
- type: Accuracy
value: 44.1
- task:
type: Natural language inference
dataset:
type: anli
name: ANLI (r3)
config: r3
split: validation
revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094
metrics:
- type: Accuracy
value: 45.5
- task:
type: Natural language inference
dataset:
type: super_glue
name: SuperGLUE (cb)
config: cb
split: validation
revision: 9e12063561e7e6c79099feb6d5a493142584e9e2
metrics:
- type: Accuracy
value: 82.14
- task:
type: Natural language inference
dataset:
type: super_glue
name: SuperGLUE (rte)
config: rte
split: validation
revision: 9e12063561e7e6c79099feb6d5a493142584e9e2
metrics:
- type: Accuracy
value: 85.56
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (ar)
config: ar
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 60.68
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (bg)
config: bg
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 48.43
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (de)
config: de
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 54.38
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (el)
config: el
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 47.43
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (en)
config: en
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 67.47
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (es)
config: es
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 61.24
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (fr)
config: fr
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 61.37
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (hi)
config: hi
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 60.2
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (ru)
config: ru
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 54.02
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (sw)
config: sw
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 52.09
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (th)
config: th
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 43.78
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (tr)
config: tr
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 45.7
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (ur)
config: ur
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 50.8
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (vi)
config: vi
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 61.0
- task:
type: Natural language inference
dataset:
type: xnli
name: XNLI (zh)
config: zh
split: validation
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
metrics:
- type: Accuracy
value: 56.91
- task:
type: Program synthesis
dataset:
type: openai_humaneval
name: HumanEval
config: None
split: test
revision: e8dc562f5de170c54b5481011dd9f4fa04845771
metrics:
- type: Pass@1
value: 12.06
- type: Pass@10
value: 26.53
- type: Pass@100
value: 48.44
- task:
type: Sentence completion
dataset:
type: story_cloze
name: StoryCloze (2016)
config: "2016"
split: validation
revision: e724c6f8cdf7c7a2fb229d862226e15b023ee4db
metrics:
- type: Accuracy
value: 96.26
- task:
type: Sentence completion
dataset:
type: super_glue
name: SuperGLUE (copa)
config: copa
split: validation
revision: 9e12063561e7e6c79099feb6d5a493142584e9e2
metrics:
- type: Accuracy
value: 91.0
- task:
type: Sentence completion
dataset:
type: xcopa
name: XCOPA (et)
config: et
split: validation
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
metrics:
- type: Accuracy
value: 51.0
- task:
type: Sentence completion
dataset:
type: xcopa
name: XCOPA (ht)
config: ht
split: validation
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
metrics:
- type: Accuracy
value: 58.0
- task:
type: Sentence completion
dataset:
type: xcopa
name: XCOPA (id)
config: id
split: validation
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
metrics:
- type: Accuracy
value: 86.0
- task:
type: Sentence completion
dataset:
type: xcopa
name: XCOPA (it)
config: it
split: validation
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
metrics:
- type: Accuracy
value: 74.0
- task:
type: Sentence completion
dataset:
type: xcopa
name: XCOPA (qu)
config: qu
split: validation
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
metrics:
- type: Accuracy
value: 56.0
- task:
type: Sentence completion
dataset:
type: xcopa
name: XCOPA (sw)
config: sw
split: validation
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
metrics:
- type: Accuracy
value: 64.0
- task:
type: Sentence completion
dataset:
type: xcopa
name: XCOPA (ta)
config: ta
split: validation
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
metrics:
- type: Accuracy
value: 69.0
- task:
type: Sentence completion
dataset:
type: xcopa
name: XCOPA (th)
config: th
split: validation
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
metrics:
- type: Accuracy
value: 58.0
- task:
type: Sentence completion
dataset:
type: xcopa
name: XCOPA (tr)
config: tr
split: validation
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
metrics:
- type: Accuracy
value: 57.0
- task:
type: Sentence completion
dataset:
type: xcopa
name: XCOPA (vi)
config: vi
split: validation
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
metrics:
- type: Accuracy
value: 87.0
- task:
type: Sentence completion
dataset:
type: xcopa
name: XCOPA (zh)
config: zh
split: validation
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
metrics:
- type: Accuracy
value: 90.0
- task:
type: Sentence completion
dataset:
type: Muennighoff/xstory_cloze
name: XStoryCloze (ar)
config: ar
split: validation
revision: 8bb76e594b68147f1a430e86829d07189622b90d
metrics:
- type: Accuracy
value: 92.79
- task:
type: Sentence completion
dataset:
type: Muennighoff/xstory_cloze
name: XStoryCloze (es)
config: es
split: validation
revision: 8bb76e594b68147f1a430e86829d07189622b90d
metrics:
- type: Accuracy
value: 94.37
- task:
type: Sentence completion
dataset:
type: Muennighoff/xstory_cloze
name: XStoryCloze (eu)
config: eu
split: validation
revision: 8bb76e594b68147f1a430e86829d07189622b90d
metrics:
- type: Accuracy
value: 86.9
- task:
type: Sentence completion
dataset:
type: Muennighoff/xstory_cloze
name: XStoryCloze (hi)
config: hi
split: validation
revision: 8bb76e594b68147f1a430e86829d07189622b90d
metrics:
- type: Accuracy
value: 88.42
- task:
type: Sentence completion
dataset:
type: Muennighoff/xstory_cloze
name: XStoryCloze (id)
config: id
split: validation
revision: 8bb76e594b68147f1a430e86829d07189622b90d
metrics:
- type: Accuracy
value: 92.12
- task:
type: Sentence completion
dataset:
type: Muennighoff/xstory_cloze
name: XStoryCloze (my)
config: my
split: validation
revision: 8bb76e594b68147f1a430e86829d07189622b90d
metrics:
- type: Accuracy
value: 52.35
- task:
type: Sentence completion
dataset:
type: Muennighoff/xstory_cloze
name: XStoryCloze (ru)
config: ru
split: validation
revision: 8bb76e594b68147f1a430e86829d07189622b90d
metrics:
- type: Accuracy
value: 81.73
- task:
type: Sentence completion
dataset:
type: Muennighoff/xstory_cloze
name: XStoryCloze (sw)
config: sw
split: validation
revision: 8bb76e594b68147f1a430e86829d07189622b90d
metrics:
- type: Accuracy
value: 79.81
- task:
type: Sentence completion
dataset:
type: Muennighoff/xstory_cloze
name: XStoryCloze (te)
config: te
split: validation
revision: 8bb76e594b68147f1a430e86829d07189622b90d
metrics:
- type: Accuracy
value: 81.2
- task:
type: Sentence completion
dataset:
type: Muennighoff/xstory_cloze
name: XStoryCloze (zh)
config: zh
split: validation
revision: 8bb76e594b68147f1a430e86829d07189622b90d
metrics:
- type: Accuracy
value: 93.12
---
![xmtf](https://github.com/bigscience-workshop/xmtf/blob/master/xmtf_banner.png?raw=true)
# Table of Contents
1. [Model Summary](#model-summary)
2. [Use](#use)
3. [Limitations](#limitations)
4. [Training](#training)
5. [Evaluation](#evaluation)
7. [Citation](#citation)
# Model Summary
> We present BLOOMZ & mT0, a family of models capable of following human instructions in dozens of languages zero-shot. We finetune BLOOM & mT5 pretrained multilingual language models on our crosslingual task mixture (xP3) and find our resulting models capable of crosslingual generalization to unseen tasks & languages.
- **Repository:** [bigscience-workshop/xmtf](https://github.com/bigscience-workshop/xmtf)
- **Paper:** [TODO]
- **Point of Contact:** [Niklas Muennighoff](mailto:[email protected])
- **Languages:** Refer to [BLOOM](https://huggingface.co/bigscience/bloom) for pretraining & [xP3](https://huggingface.co/bigscience/xP3) for finetuning language proportions. It understands both pretraining & finetuning languages.
- **BLOOMZ & mT0 Model Family:**
<table>
<tr>
<th colspan="12">Multitask finetuned on [xP3](https://huggingface.co/bigscience/xP3) - Recommended for prompting in English.
</tr>
<tr>
<th>Parameters</th>
<td>560M</td>
<td>560M</td>
<td>560M</td>
<td>560M</td>
<td>560M</td>
<td>560M</td>
<td>560M</td>
<td>560M</td>
<td>560M</td>
<td>560M</td>
<td>560M</td>
</tr>
<tr>
<th>Finetuned Model</th>
<td>560M</td>
<td>560M</td>
<td>560M</td>
<td>560M</td>
<td>560M</td>
<td>560M</td>
<td>560M</td>
<td>560M</td>
<td>560M</td>
<td>560M</td>
<td>560M</td>
</tr>
</tr>
<tr>
<th>Original pretrained checkpoint</th>
<td>560M</td>
<td>560M</td>
<td>560M</td>
<td>560M</td>
<td>560M</td>
<td>560M</td>
<td>560M</td>
<td>560M</td>
<td>560M</td>
<td>560M</td>
<td>560M</td>
</tr>
<tr>
<th colspan="12">Multitask finetuned on xP3mt - Recommended for prompting in non-English.
</tr>
</table>
<table>
<tr>
<td>One</td>
<td>Two</td>
</tr>
<tr>
<td colspan="2">Three</td>
</tr>
</table>
|Name|Explanation|
|----|-----------|
|[bloomz-560m](https://huggingface.co/bigscience/bloomz-560m)| 560M parameter multitask finetuned version of [bloom-560m](https://huggingface.co/bigscience/bloom-560m) on [xP3](https://huggingface.co/datasets/bigscience/xP3)|
|[bloomz-1b1](https://huggingface.co/bigscience/bloomz-1b1)| 1.1B parameter multitask finetuned version of [bloom-1b1](https://huggingface.co/bigscience/bloom-1b1) on [xP3](https://huggingface.co/datasets/bigscience/xP3)|
|[bloomz-1b7](https://huggingface.co/bigscience/bloomz-1b7)| 1.7B parameter multitask finetuned version of [bloom-1b7](https://huggingface.co/bigscience/bloom-1b7) on [xP3](https://huggingface.co/datasets/bigscience/xP3)|
|[bloomz-3b](https://huggingface.co/bigscience/bloomz-3b)| 3B parameter multitask finetuned version of [bloom-3b](https://huggingface.co/bigscience/bloom-3b) on [xP3](https://huggingface.co/datasets/bigscience/xP3)|
|[bloomz-7b1](https://huggingface.co/bigscience/bloomz-7b1)|7.1B parameter multitask finetuned version of [bloom-7b1](https://huggingface.co/bigscience/bloom-7b1) on [xP3](https://huggingface.co/datasets/bigscience/xP3)|
|[bloomz](https://huggingface.co/bigscience/bloomz)|176B parameter multitask finetuned version of [bloom](https://huggingface.co/bigscience/bloom) on [xP3](https://huggingface.co/datasets/bigscience/xP3)|
|||
|[bloomz-7b1-mt](https://huggingface.co/bigscience/bloomz-7b1-mt)|7.1B parameter multitask finetuned version of [bloom-7b1](https://huggingface.co/bigscience/bloom-7b1) on [xP3](https://huggingface.co/datasets/bigscience/xP3) & [xP3mt](https://huggingface.co/bigscience/datasets/xP3mt). **Better than [bloomz-7b1](https://huggingface.co/bigscience/bloomz-7b1) when prompting in non-English**|
|[bloomz-mt](https://huggingface.co/bigscience/bloomz-mt)| 176B parameter multitask finetuned version of [bloom](https://huggingface.co/bigscience/bloom) on [xP3](https://huggingface.co/datasets/bigscience/xP3) & [xP3mt](https://huggingface.co/bigscience/datasets/xP3mt). **Better than [bloomz](https://huggingface.co/bigscience/bloomz) when prompting in non-English**|
|||
|[bloomz-7b1-p3](https://huggingface.co/bigscience/bloomz-7b1)| 7.1B parameter multitask finetuned version of [bloom-7b1](https://huggingface.co/bigscience/bloom-7b1) on [P3](https://huggingface.co/datasets/bigscience/P3). **Released for research purposes, performance is inferior to [bloomz-7b1](https://huggingface.co/bigscience/bloomz-7b1)**|
|[bloomz-p3](https://huggingface.co/bigscience/bloomz)| 176B parameter multitask finetuned version of [bloom](https://huggingface.co/bigscience/bloom) on [P3](https://huggingface.co/datasets/bigscience/P3). **Released for research purposes, performance is inferior to [bloomz](https://huggingface.co/bigscience/bloomz)**|
|||
|||
|[mt0-small](https://huggingface.co/bigscience/mt0-xxl)|300M parameter multitask finetuned version of [mt5-small](https://huggingface.co/google/mt5-small) on [xP3](https://huggingface.co/datasets/bigscience/xP3)|
|[mt0-base](https://huggingface.co/bigscience/mt0-xxl)|580M parameter multitask finetuned version of [mt5-base](https://huggingface.co/google/mt5-base) on [xP3](https://huggingface.co/datasets/bigscience/xP3)|
|[mt0-large](https://huggingface.co/bigscience/mt0-xxl)|1.2B parameter multitask finetuned version of [mt5-large](https://huggingface.co/google/mt5-large) on [xP3](https://huggingface.co/datasets/bigscience/xP3)|
|[mt0-xl](https://huggingface.co/bigscience/mt0-xxl)|3.7B parameter multitask finetuned version of [mt5-xl](https://huggingface.co/google/mt5-xl) on [xP3](https://huggingface.co/datasets/bigscience/xP3)|
|[mt0-xxl](https://huggingface.co/bigscience/mt0-xxl)|13B parameter multitask finetuned version of [mt5-xxl](https://huggingface.co/google/mt5-xxl) on [xP3](https://huggingface.co/datasets/bigscience/xP3)|
|||
|[mt0-xxl-mt](https://huggingface.co/bigscience/mt0-xxl-mt)|13B parameter multitask finetuned version of [mt5-xxl](https://huggingface.co/google/mt5-xxl) on [xP3](https://huggingface.co/datasets/bigscience/xP3) & [xP3mt](https://huggingface.co/datasets/bigscience/xP3mt). **Better than [mt0-xxl](https://huggingface.co/bigscience/mt0-xxl) when prompting in non-English**|
|||
|[mt0-xxl-p3](https://huggingface.co/bigscience/mt0-xxl-p3)| 13B parameter multitask finetuned version of [mt5-xxl](https://huggingface.co/google/mt5-xxl) on [P3](https://huggingface.co/datasets/bigscience/P3). **Released for research purposes, performance is inferior to [mt0-xxl](https://huggingface.co/bigscience/mt0-xxl)**|
# Use
## Intended use
We recommend using the model to perform tasks expressed in natural language. For example, given the prompt "*Translate to English: Je t’aime.*", the model will most likely answer "*I love you.*". Some prompt ideas from our paper:
- 一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。你认为这句话的立场是赞扬、中立还是批评?
- Suggest at least five related search terms to "Mạng neural nhân tạo".
- Write a fairy tale about a troll saving a princess from a dangerous dragon. The fairy tale is a masterpiece that has achieved praise worldwide and its moral is "Heroes Come in All Shapes and Sizes". Story (in Spanish):
- Explain in a sentence in Telugu what is backpropagation in neural networks.
**Feel free to share your generations in the Community tab!**
## How to use
### CPU
<details>
<summary> Click to expand </summary>
```python
# pip install -q transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
checkpoint = "bigscience/bloomz"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint)
inputs = tokenizer.encode("Translate to English: Je t’aime.", return_tensors="pt")
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))
```
</details>
### GPU
<details>
<summary> Click to expand </summary>
```python
# pip install -q transformers accelerate
from transformers import AutoModelForCausalLM, AutoTokenizer
checkpoint = "bigscience/bloomz"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint, torch_dtype="auto", device_map="auto")
inputs = tokenizer.encode("Translate to English: Je t’aime.", return_tensors="pt").to("cuda")
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))
```
</details>
### GPU in 8bit
<details>
<summary> Click to expand </summary>
```python
# pip install -q transformers accelerate bitsandbytes
from transformers import AutoModelForCausalLM, AutoTokenizer
checkpoint = "bigscience/bloomz"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto", load_in_8bit=True)
inputs = tokenizer.encode("Translate to English: Je t’aime.", return_tensors="pt").to("cuda")
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))
```
</details>
<!-- Necessary for whitespace -->
###
# Limitations
**Prompt Engineering:** The performance may vary depending on the prompt. For BLOOMZ models, we recommend making it very clear when the input stops to avoid the model trying to continue it. For example, the prompt "*Translate to English: Je t'aime*" without the full stop (.) at the end, may result in the model trying to continue the French sentence. Better prompts are e.g. "*Translate to English: Je t'aime.*", "*Translate to English: Je t'aime. Translation:*" "*What is "Je t'aime." in English?*", where it is clear for the model when it should answer. Further, we recommend providing the model as much context as possible. For example, if you want it to answer in Telugu, then tell the model, e.g. "*Explain in a sentence in Telugu what is backpropagation in neural networks.*".
# Training
## Model
- **Architecture:** Same as [bloom](https://huggingface.co/bigscience/bloom), also refer to the `config.json` file
- **Finetuning steps:** 498
- **Finetuning tokens:** 2.09 billion
- **Finetuning layout:** 72x pipeline parallel, 1x tensor parallel, 4x data parallel
- **Precision:** bfloat16
## Hardware
- **CPUs:** AMD CPUs with 512GB memory per node
- **GPUs:** 288 A100 80GB GPUs with 8 GPUs per node (36 nodes) using NVLink 4 inter-gpu connects, 4 OmniPath links
- **Communication:** NCCL-communications network with a fully dedicated subnet
## Software
- **Orchestration:** [Megatron-DeepSpeed](https://github.com/bigscience-workshop/Megatron-DeepSpeed)
- **Optimizer & parallelism:** [DeepSpeed](https://github.com/microsoft/DeepSpeed)
- **Neural networks:** [PyTorch](https://github.com/pytorch/pytorch) (pytorch-1.11 w/ CUDA-11.5)
- **FP16 if applicable:** [apex](https://github.com/NVIDIA/apex)
# Evaluation
We refer to Table 7 from our paper [TODO LINK] and [bigscience/evaluation-results](https://huggingface.co/datasets/bigscience/evaluation-results) for zero-shot results on unseen tasks.
# Citation
```bibtex
TODO
``` |