File size: 8,560 Bytes
59290ca
 
 
028d295
59290ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a75cdc0
27464b7
 
99b17ec
 
 
 
 
 
 
 
 
 
 
 
 
59290ca
 
fd4a9a8
 
028d295
59290ca
028d295
 
 
 
 
 
 
 
59290ca
028d295
59290ca
4d349c9
59290ca
028d295
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59290ca
 
 
 
 
 
 
 
 
29e57a5
 
59290ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
---
datasets:
- bigscience/xP3
license: bigscience-bloom-rail-1.0
language:
- ak
- ar
- as
- bm
- bn
- ca
- code
- en
- es
- eu
- fon
- fr
- gu
- hi
- id
- ig
- ki
- kn
- lg
- ln
- ml
- mr
- ne
- nso
- ny
- or
- pa
- pt
- rn
- rw
- sn
- st
- sw
- ta
- te
- tn
- ts
- tum
- tw
- ur
- vi
- wo
- xh
- yo
- zh
- zu
programming_language: 
- C
- C++
- C#
- Go
- Java
- JavaScript
- Lua
- PHP
- Python
- Ruby
- Rust
- Scala
- TypeScript
pipeline_tag: text-generation
widget:
- text: "一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。Would you rate the previous review as positive, neutral or negative?"
  example_title: "zh-en sentiment"
- text: "一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。你认为这句话的立场是赞扬、中立还是批评?"
  example_title: "zh-zh sentiment"
- text: "Suggest at least five related search terms to \"Mạng neural nhân tạo\"."
  example_title: "vi-en query"
- text: "Proposez au moins cinq mots clés concernant «Réseau de neurones artificiels»."
  example_title: "fr-fr query"
- text: "Explain in a sentence in Telugu what is backpropagation in neural networks."
  example_title: "te-en qa"
- text: "Why is the sky blue?"
  example_title: "en-en qa"
- text: "Write a fairy tale about a troll saving a princess from a dangerous dragon. The fairy tale is a masterpiece that has achieved praise worldwide and its moral is \"Heroes Come in All Shapes and Sizes\". Story (in Spanish):"
  example_title: "es-en fable"
- text: "Write a fable about wood elves living in a forest that is suddenly invaded by ogres. The fable is a masterpiece that has achieved praise worldwide and its moral is \"Violence is the last refuge of the incompetent\". Fable (in Hindi):"
  example_title: "hi-en fable"
---

![xmtf](https://github.com/bigscience-workshop/xmtf/blob/master/xmtf_banner.png?raw=true)

#  Table of Contents

1. [Model Summary](#model=summary)
2. [Use](#use)
3. [Bias, Risks, and Limitations](#bias-risks-and-limitations)
4. [Training Details](#training-details)
5. [Evaluation](#evaluation)
6. [Environmental Impact](#environmental-impact)
7. [Citation](#citation)
9. [How To Get Started With the Model](#how-to-get-started-with-the-model)

# Model Summary

> We present BLOOMZ & mT0, a family of models capable of following human instructions in dozens of languages zero-shot. We finetune BLOOM & mT5 pretrained multilingual language models on our crosslingual task mixture (xP3) and find our resulting models capable of crosslingual generalization to unseen tasks & languages.

- **Repository:** [bigscience-workshop/xmtf](https://github.com/bigscience-workshop/xmtf)
- **Paper:** [TODO]
- **Point of Contact:** [Niklas Muennighoff](mailto:[email protected])
- **BLOOMZ & mT0 Model Family:**
|Name|Explanation|
|----|-----------|
|[bloomz-560m](https://huggingface.co/bigscience/bloomz-560m)| 560M parameter multitask finetuned version of [bloom-560m](https://huggingface.co/bigscience/bloom-560m) on [xP3](https://huggingface.co/bigscience/xP3)|
|[bloomz-1b1](https://huggingface.co/bigscience/bloomz-1b1)| 1.1B parameter multitask finetuned version of [bloom-1b1](https://huggingface.co/bigscience/bloom-1b1) on [xP3](https://huggingface.co/bigscience/xP3)|
|[bloomz-1b7](https://huggingface.co/bigscience/bloomz-1b7)| 1.7B parameter multitask finetuned version of [bloom-1b7](https://huggingface.co/bigscience/bloom-1b7) on [xP3](https://huggingface.co/bigscience/xP3)|
|[bloomz-3b](https://huggingface.co/bigscience/bloomz-3b)| 3B parameter multitask finetuned version of [bloom-3b](https://huggingface.co/bigscience/bloom-3b) on [xP3](https://huggingface.co/bigscience/xP3)|
|[bloomz-7b1](https://huggingface.co/bigscience/bloomz-7b1)|7.1B parameter multitask finetuned version of [bloom-7b1](https://huggingface.co/bigscience/bloom-7b1) on [xP3](https://huggingface.co/bigscience/xP3)|
|[bloomz](https://huggingface.co/bigscience/bloomz)|176B parameter multitask finetuned version of [bloom](https://huggingface.co/bigscience/bloom) on [xP3](https://huggingface.co/bigscience/xP3)|
|||
|[bloomz-7b1-mt](https://huggingface.co/bigscience/bloomz-7b1-mt)|7.1B parameter multitask finetuned version of [bloom-7b1](https://huggingface.co/bigscience/bloom-7b1) on [xP3](https://huggingface.co/bigscience/xP3) & [xP3mt](https://huggingface.co/bigscience/xP3mt). **Better than [bloomz-7b1](https://huggingface.co/bigscience/bloomz-7b1) when prompting in non-English**|
|[bloomz-mt](https://huggingface.co/bigscience/bloomz-mt)| 176B parameter multitask finetuned version of [bloom](https://huggingface.co/bigscience/bloom) on [xP3](https://huggingface.co/bigscience/xP3) & [xP3mt](https://huggingface.co/bigscience/xP3mt). **Better than [bloomz](https://huggingface.co/bigscience/bloomz) when prompting in non-English**|
|||
|[bloomz-7b1-p3](https://huggingface.co/bigscience/bloomz-7b1)| 7.1B parameter multitask finetuned version of [bloom-7b1](https://huggingface.co/bigscience/bloom-7b1) on [P3](https://huggingface.co/bigscience/P3). **Released for research purposes, performance is inferior to [bloomz-7b1](https://huggingface.co/bigscience/bloomz-7b1)**|
|[bloomz-p3](https://huggingface.co/bigscience/bloomz)| 176B parameter multitask finetuned version of [bloom](https://huggingface.co/bigscience/bloom) on [P3](https://huggingface.co/bigscience/P3). **Released for research purposes, performance is inferior to [bloomz](https://huggingface.co/bigscience/bloomz)**|
|||
|||
|[mt0-small](https://huggingface.co/bigscience/mt0-xxl)|300M parameter multitask finetuned version of [mt5-small](https://huggingface.co/google/mt5-small) on [xP3](https://huggingface.co/bigscience/xP3)|
|[mt0-base](https://huggingface.co/bigscience/mt0-xxl)|580M parameter multitask finetuned version of [mt5-base](https://huggingface.co/google/mt5-base) on [xP3](https://huggingface.co/bigscience/xP3)|
|[mt0-large](https://huggingface.co/bigscience/mt0-xxl)|1.2B parameter multitask finetuned version of [mt5-large](https://huggingface.co/google/mt5-large) on [xP3](https://huggingface.co/bigscience/xP3)|
|[mt0-xl](https://huggingface.co/bigscience/mt0-xxl)|3.7B parameter multitask finetuned version of [mt5-xl](https://huggingface.co/google/mt5-xl) on [xP3](https://huggingface.co/bigscience/xP3)|
|[mt0-xxl](https://huggingface.co/bigscience/mt0-xxl)|13B parameter multitask finetuned version of [mt5-xxl](https://huggingface.co/google/mt5-xxl) on [xP3](https://huggingface.co/bigscience/xP3)|
|||
|[mt0-xxl-mt](https://huggingface.co/bigscience/mt0-xxl-mt)|13B parameter multitask finetuned version of [mt5-xxl](https://huggingface.co/google/mt5-xxl) on [xP3](https://huggingface.co/bigscience/xP3) & [xP3mt](https://huggingface.co/bigscience/xP3mt). **Better than [mt0-xxl](https://huggingface.co/bigscience/mt0-xxl) when prompting in non-English**|
|||
|[mt0-xxl-p3](https://huggingface.co/bigscience/mt0-xxl-p3)| 13B parameter multitask finetuned version of [mt5-xxl](https://huggingface.co/google/mt5-xxl) on [P3](https://huggingface.co/bigscience/P3). **Released for research purposes, performance is inferior to [mt0-xxl](https://huggingface.co/bigscience/mt0-xxl)**|
|----|-----------|


# Intended uses

You can use the models to perform inference on tasks by specifying your query in natural language, and the models will generate a prediction. For instance, you can ask *"Translate this to Chinese: Je t'aime."*, and the model will hopefully generate *"我爱你"*.

# How to use

Here is how to use the model in PyTorch:

TODO: Better code with auto-precision?
```python
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("bigscience/bloomz-560m")
model = AutoModelForCausalLM.from_pretrained("bigscience/bloomz-560m")

inputs = tokenizer.encode("Is this review positive or negative? Review: this is the best cast iron skillet you will ever buy", return_tensors="pt")
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))
```

To use another checkpoint, replace the path in `AutoTokenizer` and `AutoModelForCausalLM`.

**Note: 176B models are trained with bfloat16, while smaller models are trained with fp16. We recommend using the same precision type or fp32 at inference**

# Limitations

- Large model size may require large computational resources
- High performance variance depending on the prompt

# BibTeX entry and citation info

```bibtex
TODO
```