TimeRobber
commited on
Commit
·
00b95dc
1
Parent(s):
7cc5660
Update README.md (#1)
Browse files- Update README.md (d8040f895b7124bcfb7862ed5a7d19412960def7)
README.md
CHANGED
@@ -69,7 +69,7 @@ language:
|
|
69 |
- my
|
70 |
- ne
|
71 |
- nl
|
72 |
-
- no
|
73 |
- ny
|
74 |
- pa
|
75 |
- pl
|
@@ -105,24 +105,35 @@ language:
|
|
105 |
- yo
|
106 |
- zh
|
107 |
- zu
|
108 |
-
pipeline_tag:
|
109 |
widget:
|
110 |
-
- text:
|
111 |
-
|
112 |
-
|
113 |
-
example_title:
|
114 |
-
- text:
|
115 |
-
example_title:
|
116 |
-
- text:
|
117 |
-
example_title:
|
118 |
-
- text:
|
119 |
-
|
120 |
-
|
121 |
-
example_title:
|
122 |
-
- text:
|
123 |
-
example_title:
|
124 |
-
- text:
|
125 |
-
example_title:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
model-index:
|
127 |
- name: mt0-base
|
128 |
results:
|
@@ -246,7 +257,7 @@ model-index:
|
|
246 |
revision: 9e12063561e7e6c79099feb6d5a493142584e9e2
|
247 |
metrics:
|
248 |
- type: Accuracy
|
249 |
-
value: 50
|
250 |
- task:
|
251 |
type: Natural language inference
|
252 |
dataset:
|
@@ -428,7 +439,7 @@ model-index:
|
|
428 |
dataset:
|
429 |
type: story_cloze
|
430 |
name: StoryCloze (2016)
|
431 |
-
config:
|
432 |
split: validation
|
433 |
revision: e724c6f8cdf7c7a2fb229d862226e15b023ee4db
|
434 |
metrics:
|
@@ -444,7 +455,7 @@ model-index:
|
|
444 |
revision: 9e12063561e7e6c79099feb6d5a493142584e9e2
|
445 |
metrics:
|
446 |
- type: Accuracy
|
447 |
-
value: 55
|
448 |
- task:
|
449 |
type: Sentence completion
|
450 |
dataset:
|
@@ -455,7 +466,7 @@ model-index:
|
|
455 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
456 |
metrics:
|
457 |
- type: Accuracy
|
458 |
-
value: 52
|
459 |
- task:
|
460 |
type: Sentence completion
|
461 |
dataset:
|
@@ -466,7 +477,7 @@ model-index:
|
|
466 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
467 |
metrics:
|
468 |
- type: Accuracy
|
469 |
-
value: 60
|
470 |
- task:
|
471 |
type: Sentence completion
|
472 |
dataset:
|
@@ -477,7 +488,7 @@ model-index:
|
|
477 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
478 |
metrics:
|
479 |
- type: Accuracy
|
480 |
-
value: 55
|
481 |
- task:
|
482 |
type: Sentence completion
|
483 |
dataset:
|
@@ -488,7 +499,7 @@ model-index:
|
|
488 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
489 |
metrics:
|
490 |
- type: Accuracy
|
491 |
-
value: 61
|
492 |
- task:
|
493 |
type: Sentence completion
|
494 |
dataset:
|
@@ -499,7 +510,7 @@ model-index:
|
|
499 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
500 |
metrics:
|
501 |
- type: Accuracy
|
502 |
-
value: 55
|
503 |
- task:
|
504 |
type: Sentence completion
|
505 |
dataset:
|
@@ -510,7 +521,7 @@ model-index:
|
|
510 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
511 |
metrics:
|
512 |
- type: Accuracy
|
513 |
-
value: 59
|
514 |
- task:
|
515 |
type: Sentence completion
|
516 |
dataset:
|
@@ -521,7 +532,7 @@ model-index:
|
|
521 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
522 |
metrics:
|
523 |
- type: Accuracy
|
524 |
-
value: 63
|
525 |
- task:
|
526 |
type: Sentence completion
|
527 |
dataset:
|
@@ -532,7 +543,7 @@ model-index:
|
|
532 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
533 |
metrics:
|
534 |
- type: Accuracy
|
535 |
-
value: 55
|
536 |
- task:
|
537 |
type: Sentence completion
|
538 |
dataset:
|
@@ -543,7 +554,7 @@ model-index:
|
|
543 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
544 |
metrics:
|
545 |
- type: Accuracy
|
546 |
-
value: 60
|
547 |
- task:
|
548 |
type: Sentence completion
|
549 |
dataset:
|
@@ -554,7 +565,7 @@ model-index:
|
|
554 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
555 |
metrics:
|
556 |
- type: Accuracy
|
557 |
-
value: 52
|
558 |
- task:
|
559 |
type: Sentence completion
|
560 |
dataset:
|
@@ -565,7 +576,7 @@ model-index:
|
|
565 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
566 |
metrics:
|
567 |
- type: Accuracy
|
568 |
-
value: 58
|
569 |
- task:
|
570 |
type: Sentence completion
|
571 |
dataset:
|
@@ -609,7 +620,7 @@ model-index:
|
|
609 |
revision: 8bb76e594b68147f1a430e86829d07189622b90d
|
610 |
metrics:
|
611 |
- type: Accuracy
|
612 |
-
value: 55
|
613 |
- task:
|
614 |
type: Sentence completion
|
615 |
dataset:
|
|
|
69 |
- my
|
70 |
- ne
|
71 |
- nl
|
72 |
+
- 'no'
|
73 |
- ny
|
74 |
- pa
|
75 |
- pl
|
|
|
105 |
- yo
|
106 |
- zh
|
107 |
- zu
|
108 |
+
pipeline_tag: text2text-generation
|
109 |
widget:
|
110 |
+
- text: >-
|
111 |
+
一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。Would you rate the previous
|
112 |
+
review as positive, neutral or negative?
|
113 |
+
example_title: zh-en sentiment
|
114 |
+
- text: 一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。你认为这句话的立场是赞扬、中立还是批评?
|
115 |
+
example_title: zh-zh sentiment
|
116 |
+
- text: Suggest at least five related search terms to "Mạng neural nhân tạo".
|
117 |
+
example_title: vi-en query
|
118 |
+
- text: >-
|
119 |
+
Proposez au moins cinq mots clés concernant «Réseau de neurones
|
120 |
+
artificiels».
|
121 |
+
example_title: fr-fr query
|
122 |
+
- text: Explain in a sentence in Telugu what is backpropagation in neural networks.
|
123 |
+
example_title: te-en qa
|
124 |
+
- text: Why is the sky blue?
|
125 |
+
example_title: en-en qa
|
126 |
+
- text: >-
|
127 |
+
Write a fairy tale about a troll saving a princess from a dangerous dragon.
|
128 |
+
The fairy tale is a masterpiece that has achieved praise worldwide and its
|
129 |
+
moral is "Heroes Come in All Shapes and Sizes". Story (in Spanish):
|
130 |
+
example_title: es-en fable
|
131 |
+
- text: >-
|
132 |
+
Write a fable about wood elves living in a forest that is suddenly invaded
|
133 |
+
by ogres. The fable is a masterpiece that has achieved praise worldwide and
|
134 |
+
its moral is "Violence is the last refuge of the incompetent". Fable (in
|
135 |
+
Hindi):
|
136 |
+
example_title: hi-en fable
|
137 |
model-index:
|
138 |
- name: mt0-base
|
139 |
results:
|
|
|
257 |
revision: 9e12063561e7e6c79099feb6d5a493142584e9e2
|
258 |
metrics:
|
259 |
- type: Accuracy
|
260 |
+
value: 50
|
261 |
- task:
|
262 |
type: Natural language inference
|
263 |
dataset:
|
|
|
439 |
dataset:
|
440 |
type: story_cloze
|
441 |
name: StoryCloze (2016)
|
442 |
+
config: '2016'
|
443 |
split: validation
|
444 |
revision: e724c6f8cdf7c7a2fb229d862226e15b023ee4db
|
445 |
metrics:
|
|
|
455 |
revision: 9e12063561e7e6c79099feb6d5a493142584e9e2
|
456 |
metrics:
|
457 |
- type: Accuracy
|
458 |
+
value: 55
|
459 |
- task:
|
460 |
type: Sentence completion
|
461 |
dataset:
|
|
|
466 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
467 |
metrics:
|
468 |
- type: Accuracy
|
469 |
+
value: 52
|
470 |
- task:
|
471 |
type: Sentence completion
|
472 |
dataset:
|
|
|
477 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
478 |
metrics:
|
479 |
- type: Accuracy
|
480 |
+
value: 60
|
481 |
- task:
|
482 |
type: Sentence completion
|
483 |
dataset:
|
|
|
488 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
489 |
metrics:
|
490 |
- type: Accuracy
|
491 |
+
value: 55
|
492 |
- task:
|
493 |
type: Sentence completion
|
494 |
dataset:
|
|
|
499 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
500 |
metrics:
|
501 |
- type: Accuracy
|
502 |
+
value: 61
|
503 |
- task:
|
504 |
type: Sentence completion
|
505 |
dataset:
|
|
|
510 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
511 |
metrics:
|
512 |
- type: Accuracy
|
513 |
+
value: 55
|
514 |
- task:
|
515 |
type: Sentence completion
|
516 |
dataset:
|
|
|
521 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
522 |
metrics:
|
523 |
- type: Accuracy
|
524 |
+
value: 59
|
525 |
- task:
|
526 |
type: Sentence completion
|
527 |
dataset:
|
|
|
532 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
533 |
metrics:
|
534 |
- type: Accuracy
|
535 |
+
value: 63
|
536 |
- task:
|
537 |
type: Sentence completion
|
538 |
dataset:
|
|
|
543 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
544 |
metrics:
|
545 |
- type: Accuracy
|
546 |
+
value: 55
|
547 |
- task:
|
548 |
type: Sentence completion
|
549 |
dataset:
|
|
|
554 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
555 |
metrics:
|
556 |
- type: Accuracy
|
557 |
+
value: 60
|
558 |
- task:
|
559 |
type: Sentence completion
|
560 |
dataset:
|
|
|
565 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
566 |
metrics:
|
567 |
- type: Accuracy
|
568 |
+
value: 52
|
569 |
- task:
|
570 |
type: Sentence completion
|
571 |
dataset:
|
|
|
576 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
577 |
metrics:
|
578 |
- type: Accuracy
|
579 |
+
value: 58
|
580 |
- task:
|
581 |
type: Sentence completion
|
582 |
dataset:
|
|
|
620 |
revision: 8bb76e594b68147f1a430e86829d07189622b90d
|
621 |
metrics:
|
622 |
- type: Accuracy
|
623 |
+
value: 55
|
624 |
- task:
|
625 |
type: Sentence completion
|
626 |
dataset:
|