--- library_name: transformers license: llama3.2 base_model: meta-llama/Llama-3.2-1B-Instruct tags: - generated_from_trainer datasets: - gohsyi/metamath-sft metrics: - accuracy model-index: - name: Llama-3.2-1B-Instruct-sft_metamath results: - task: name: Causal Language Modeling type: text-generation dataset: name: gohsyi/metamath-sft type: gohsyi/metamath-sft metrics: - name: Accuracy type: accuracy value: 0.8814735253307663 --- # Llama-3.2-1B-Instruct-sft_metamath This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the gohsyi/metamath-sft dataset. It achieves the following results on the evaluation set: - Loss: 0.4330 - Accuracy: 0.8815 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 14 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 16 - total_train_batch_size: 448 - total_eval_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.46.2 - Pytorch 2.3.0+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3