bilal521 commited on
Commit
b63a60c
Β·
verified Β·
1 Parent(s): 240a72a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +15 -11
README.md CHANGED
@@ -2,16 +2,18 @@
2
  language: en
3
  license: apache-2.0
4
  datasets:
5
- - custom
6
  tags:
7
- - summarization
8
- - flan-t5
9
- - youtube
10
- - fine-tuned
11
  base_model: google/flan-t5-base
12
  model-index:
13
- - name: Flan T5 YouTube Summarizer
14
- results: []
 
 
15
  ---
16
 
17
  # πŸ“Ί T5 YouTube Summarizer
@@ -27,7 +29,7 @@ This is a fine-tuned [flan-t5-base](https://huggingface.co/google/flan-t5-base)
27
  - **Training Data**: YouTube video transcripts and human-written summaries
28
  - **Max Input Length**: 512 tokens
29
  - **Max Output Length**: 256 tokens
30
- - **Fine-tuning Epochs**: 10
31
  - **Tokenizer**: T5Tokenizer (pretrained)
32
 
33
  ---
@@ -44,7 +46,7 @@ This model is designed to generate short, informative summaries from long transc
44
 
45
  ## πŸš€ How to Use
46
 
47
- python
48
  from transformers import T5ForConditionalGeneration, T5Tokenizer
49
 
50
  # Load the model
@@ -69,7 +71,7 @@ summary_ids = model.generate(
69
 
70
  summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
71
  print(summary)
72
-
73
 
74
  ## πŸ“Š Evaluation
75
 
@@ -83,9 +85,11 @@ print(summary)
83
 
84
  ## πŸ“Œ Citation
85
  If you use this model in your work, consider citing:
 
86
  @misc{t5ytsummarizer2025,
87
  title={Flan T5 YouTube Transcript Summarizer},
88
  author={Muhammad Bilal Yousaf},
89
  year={2025},
90
  howpublished={\url{https://huggingface.co/bilal521/flan-t5-youtube-summarizer}},
91
- }
 
 
2
  language: en
3
  license: apache-2.0
4
  datasets:
5
+ - custom
6
  tags:
7
+ - summarization
8
+ - flan-t5
9
+ - youtube
10
+ - fine-tuned
11
  base_model: google/flan-t5-base
12
  model-index:
13
+ - name: Flan T5 YouTube Summarizer
14
+ results: []
15
+ metrics:
16
+ - rouge
17
  ---
18
 
19
  # πŸ“Ί T5 YouTube Summarizer
 
29
  - **Training Data**: YouTube video transcripts and human-written summaries
30
  - **Max Input Length**: 512 tokens
31
  - **Max Output Length**: 256 tokens
32
+ - **Fine-tuning Epochs**: 5
33
  - **Tokenizer**: T5Tokenizer (pretrained)
34
 
35
  ---
 
46
 
47
  ## πŸš€ How to Use
48
 
49
+ ```python
50
  from transformers import T5ForConditionalGeneration, T5Tokenizer
51
 
52
  # Load the model
 
71
 
72
  summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
73
  print(summary)
74
+ ```
75
 
76
  ## πŸ“Š Evaluation
77
 
 
85
 
86
  ## πŸ“Œ Citation
87
  If you use this model in your work, consider citing:
88
+ ```
89
  @misc{t5ytsummarizer2025,
90
  title={Flan T5 YouTube Transcript Summarizer},
91
  author={Muhammad Bilal Yousaf},
92
  year={2025},
93
  howpublished={\url{https://huggingface.co/bilal521/flan-t5-youtube-summarizer}},
94
+ }
95
+ ```