Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 📺 T5 YouTube Summarizer
|
2 |
+
|
3 |
+
This is a fine-tuned [`t5-base`](https://huggingface.co/t5-base) model for abstractive summarization of YouTube video transcripts. The model is trained on a custom dataset of video transcriptions and their manually written summaries.
|
4 |
+
|
5 |
+
---
|
6 |
+
|
7 |
+
## ✨ Model Details
|
8 |
+
|
9 |
+
- **Base Model**: [`t5-base`](https://huggingface.co/t5-base)
|
10 |
+
- **Task**: Abstractive Summarization
|
11 |
+
- **Training Data**: YouTube video transcripts and human-written summaries
|
12 |
+
- **Max Input Length**: 512 tokens
|
13 |
+
- **Max Output Length**: 256 tokens
|
14 |
+
- **Fine-tuning Epochs**: 10
|
15 |
+
- **Tokenizer**: `T5Tokenizer` (pretrained)
|
16 |
+
|
17 |
+
---
|
18 |
+
|
19 |
+
## 🧠 Intended Use
|
20 |
+
|
21 |
+
This model is designed to generate short, informative summaries from long transcripts of educational or conceptual YouTube videos. It can be used for:
|
22 |
+
|
23 |
+
- Quick understanding of long videos
|
24 |
+
- Automated content summaries for blogs, platforms, or note-taking tools
|
25 |
+
- Enhancing accessibility for long-form spoken content
|
26 |
+
|
27 |
+
---
|
28 |
+
|
29 |
+
## 🚀 How to Use
|
30 |
+
|
31 |
+
```python
|
32 |
+
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
33 |
+
|
34 |
+
# Load the model
|
35 |
+
model = T5ForConditionalGeneration.from_pretrained("your-username/t5-youtube-summarizer")
|
36 |
+
tokenizer = T5Tokenizer.from_pretrained("your-username/t5-youtube-summarizer")
|
37 |
+
|
38 |
+
# Define input text
|
39 |
+
text = "The video talks about coordinate covalent bonds, giving examples from..."
|
40 |
+
|
41 |
+
# Preprocess and summarize
|
42 |
+
inputs = tokenizer.encode("summarize: " + text, return_tensors="pt", max_length=512, truncation=True)
|
43 |
+
|
44 |
+
summary_ids = model.generate(
|
45 |
+
inputs,
|
46 |
+
max_length=256,
|
47 |
+
min_length=80,
|
48 |
+
num_beams=5,
|
49 |
+
length_penalty=2.0,
|
50 |
+
no_repeat_ngram_size=3,
|
51 |
+
early_stopping=True
|
52 |
+
)
|
53 |
+
|
54 |
+
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
55 |
+
print(summary)
|