nioushasadjadi
commited on
Commit
·
1c6d85d
1
Parent(s):
1bbc46c
Add tokenizer.py
Browse files- tokenizer.py +130 -0
tokenizer.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PreTrainedTokenizer
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
from itertools import product
|
5 |
+
|
6 |
+
|
7 |
+
class KmerTokenizer(PreTrainedTokenizer):
|
8 |
+
def __init__(self, vocab_dict=None, k=4, stride=4, **kwargs):
|
9 |
+
self.k = k
|
10 |
+
self.stride = stride
|
11 |
+
self.special_tokens = ["[MASK]", "[UNK]"]
|
12 |
+
|
13 |
+
if vocab_dict is None:
|
14 |
+
kmers = ["".join(kmer) for kmer in product('ACGT', repeat=self.k)]
|
15 |
+
self.vocab = self.special_tokens + kmers
|
16 |
+
self.vocab_dict = {word: idx for idx, word in enumerate(self.vocab)}
|
17 |
+
else:
|
18 |
+
self.vocab = list(vocab_dict.keys())
|
19 |
+
self.vocab_dict = vocab_dict
|
20 |
+
|
21 |
+
super().__init__(**kwargs)
|
22 |
+
|
23 |
+
self.mask_token = "[MASK]"
|
24 |
+
self.unk_token = "[UNK]"
|
25 |
+
# self.pad_token = "[PAD]"
|
26 |
+
|
27 |
+
def _tokenize(self, text):
|
28 |
+
splits = [text[i:i + self.k] for i in range(0, len(text) - self.k + 1, self.stride)]
|
29 |
+
return self.convert_tokens_to_ids(splits)
|
30 |
+
|
31 |
+
def convert_tokens_to_ids(self, tokens):
|
32 |
+
unk_id = self.vocab_dict.get(self.unk_token)
|
33 |
+
return [self.vocab_dict[token] if token in self.vocab_dict else unk_id for token in tokens]
|
34 |
+
|
35 |
+
def convert_ids_to_tokens(self, ids):
|
36 |
+
id_to_token = {idx: token for token, idx in self.vocab_dict.items()}
|
37 |
+
return [id_to_token.get(id_, self.unk_token) for id_ in ids]
|
38 |
+
|
39 |
+
# def build_inputs_with_special_tokens(self, token_ids):
|
40 |
+
# return [self.vocab_dict.get(self.cls_token)] + token_ids + [self.vocab_dict.get(self.sep_token)]
|
41 |
+
|
42 |
+
def get_vocab(self):
|
43 |
+
return self.vocab_dict
|
44 |
+
|
45 |
+
def save_vocabulary(self, save_directory, **kwargs):
|
46 |
+
vocab_file = os.path.join(save_directory, "tokenizer.json")
|
47 |
+
with open(vocab_file, "w", encoding="utf-8") as f:
|
48 |
+
# Format
|
49 |
+
vocab_content = {
|
50 |
+
"version": "1.0",
|
51 |
+
"added_tokens": [
|
52 |
+
{"id": self.vocab_dict[self.mask_token], "content": self.mask_token, "special": True},
|
53 |
+
{"id": self.vocab_dict[self.unk_token], "content": self.unk_token, "special": True}
|
54 |
+
],
|
55 |
+
"pre_tokenizer": {
|
56 |
+
"type": "KmerSplitter",
|
57 |
+
"k": self.k,
|
58 |
+
"stride": self.stride
|
59 |
+
},
|
60 |
+
# "post_processor": {
|
61 |
+
# "type": "TemplateProcessing",
|
62 |
+
# "single": [
|
63 |
+
# {"SpecialToken": {"id": self.cls_token, "type_id": 0}},
|
64 |
+
# {"Sequence": {"id": "A", "type_id": 0}},
|
65 |
+
# {"SpecialToken": {"id": self.sep_token, "type_id": 0}}
|
66 |
+
# ],
|
67 |
+
# "pair": [
|
68 |
+
# {"SpecialToken": {"id": self.cls_token, "type_id": 0}},
|
69 |
+
# {"Sequence": {"id": "A", "type_id": 0}},
|
70 |
+
# {"SpecialToken": {"id": self.sep_token, "type_id": 0}},
|
71 |
+
# {"Sequence": {"id": "B", "type_id": 1}},
|
72 |
+
# {"SpecialToken": {"id": self.sep_token, "type_id": 1}}
|
73 |
+
# ]
|
74 |
+
# }
|
75 |
+
"model": {
|
76 |
+
"type": "k-mer",
|
77 |
+
"k": self.k,
|
78 |
+
"stride": self.stride,
|
79 |
+
"unk_token": self.unk_token,
|
80 |
+
"vocab": self.vocab_dict
|
81 |
+
},
|
82 |
+
}
|
83 |
+
json.dump(vocab_content, f, ensure_ascii=False, indent=2)
|
84 |
+
# vocab_file = os.path.join(save_directory, "tokenizer.json")
|
85 |
+
# with open(vocab_file, "w", encoding="utf-8") as f:
|
86 |
+
# json.dump(self.vocab_dict, f, ensure_ascii=False, indent=2)
|
87 |
+
|
88 |
+
tokenizer_config = {
|
89 |
+
"added_tokens_decoder": {
|
90 |
+
"0": {"content": "[MASK]", "lstrip": False, "normalized": False, "rstrip": False, "single_word": False,
|
91 |
+
"special": True},
|
92 |
+
"1": {"content": "[UNK]", "lstrip": False, "normalized": False, "rstrip": False, "single_word": False,
|
93 |
+
"special": True}
|
94 |
+
},
|
95 |
+
"clean_up_tokenization_spaces": True,
|
96 |
+
"mask_token": "[MASK]",
|
97 |
+
"model_max_length": 1e12, # Set a high number, or adjust as needed
|
98 |
+
"tokenizer_class": "KmerTokenizer", # Set your tokenizer class name
|
99 |
+
"unk_token": "[UNK]",
|
100 |
+
"k": self.k,
|
101 |
+
"stride": self.stride
|
102 |
+
}
|
103 |
+
tokenizer_config_file = os.path.join(save_directory, "tokenizer_config.json")
|
104 |
+
with open(tokenizer_config_file, "w", encoding="utf-8") as f:
|
105 |
+
json.dump(tokenizer_config, f, ensure_ascii=False, indent=2)
|
106 |
+
|
107 |
+
return vocab_file, tokenizer_config_file
|
108 |
+
|
109 |
+
@classmethod
|
110 |
+
def from_pretrained(cls, pretrained_dir, **kwargs):
|
111 |
+
# Load vocabulary
|
112 |
+
vocab_file = os.path.join(pretrained_dir, "tokenizer.json")
|
113 |
+
with open(vocab_file, "r", encoding="utf-8") as f:
|
114 |
+
vocab_content = json.load(f)
|
115 |
+
vocab = vocab_content["model"]["vocab"]
|
116 |
+
# k = vocab_content["model"]["k"]
|
117 |
+
# stride = vocab_content["model"]["stride"]
|
118 |
+
|
119 |
+
# Load k and stride from tokenizer_config.json
|
120 |
+
tokenizer_config_file = os.path.join(pretrained_dir, "tokenizer_config.json")
|
121 |
+
if os.path.exists(tokenizer_config_file):
|
122 |
+
with open(tokenizer_config_file, "r", encoding="utf-8") as f:
|
123 |
+
tokenizer_config = json.load(f)
|
124 |
+
k = tokenizer_config.get("k", 4) # Default to 4 if not specified
|
125 |
+
stride = tokenizer_config.get("stride", k) # Default to k if not specified
|
126 |
+
else:
|
127 |
+
raise ValueError(f"Tokenizer config file not found at {tokenizer_config_file}")
|
128 |
+
|
129 |
+
# Instantiate the tokenizer with loaded values
|
130 |
+
return cls(vocab=vocab, k=k, stride=stride, **kwargs)
|