Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
---
|
6 |
+
|
7 |
+
# BarcodeBERT for Taxonomic Classification
|
8 |
+
|
9 |
+
A pre-trained transformer model for inference on insect DNA barcoding data.
|
10 |
+
|
11 |
+
To use **BarcodeBERT** as a feature extractor:
|
12 |
+
|
13 |
+
```python
|
14 |
+
from transformers import AutoTokenizer, AutoModel
|
15 |
+
|
16 |
+
# Load the tokenizer
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained("bioscan-ml/BarcodeBERT", trust_remote_code=True)
|
18 |
+
|
19 |
+
#Load the model
|
20 |
+
model = AutoModel.from_pretrained("bioscan-ml/BarcodeBERT", trust_remote_code=True)
|
21 |
+
|
22 |
+
# Sample sequence
|
23 |
+
dna_seq = 'ACGCGCTGACGCATCAGCATACGA'
|
24 |
+
|
25 |
+
# Tokenize
|
26 |
+
input_seq = tokenizer(dna_seq, return_tensors = 'pt')['input_ids']
|
27 |
+
|
28 |
+
# Pass through the model
|
29 |
+
output = model(input_seq)['hidden_states'][-1]
|
30 |
+
|
31 |
+
# Compute Global Average Pooling
|
32 |
+
features = output.mean(1)
|
33 |
+
```
|
34 |
+
|
35 |
+
## Citation
|
36 |
+
|
37 |
+
If you find BarcodeBERT useful in your research please consider citing:
|
38 |
+
|
39 |
+
@misc{arias2023barcodebert,
|
40 |
+
title={{BarcodeBERT}: Transformers for Biodiversity Analysis},
|
41 |
+
author={Pablo Millan Arias
|
42 |
+
and Niousha Sadjadi
|
43 |
+
and Monireh Safari
|
44 |
+
and ZeMing Gong
|
45 |
+
and Austin T. Wang
|
46 |
+
and Scott C. Lowe
|
47 |
+
and Joakim Bruslund Haurum
|
48 |
+
and Iuliia Zarubiieva
|
49 |
+
and Dirk Steinke
|
50 |
+
and Lila Kari
|
51 |
+
and Angel X. Chang
|
52 |
+
and Graham W. Taylor
|
53 |
+
},
|
54 |
+
year={2023},
|
55 |
+
eprint={2311.02401},
|
56 |
+
archivePrefix={arXiv},
|
57 |
+
primaryClass={cs.LG},
|
58 |
+
doi={10.48550/arxiv.2311.02401},
|
59 |
+
}
|
60 |
+
|
61 |
+
|
62 |
+
|