nioushasadjadi
commited on
Commit
·
82681b6
1
Parent(s):
92d46e2
Fixing encoder and tokenize functions.
Browse files- tokenizer.py +13 -18
tokenizer.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
from transformers import PreTrainedTokenizer
|
2 |
from huggingface_hub import hf_hub_download
|
|
|
3 |
import json
|
4 |
import os
|
5 |
from itertools import product
|
@@ -25,15 +26,24 @@ class KmerTokenizer(PreTrainedTokenizer):
|
|
25 |
self.unk_token = "[UNK]"
|
26 |
# self.pad_token = "[PAD]"
|
27 |
|
28 |
-
def _tokenize(self, text):
|
29 |
splits = [text[i:i + self.k] for i in range(0, len(text) - self.k + 1, self.stride)]
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
def convert_tokens_to_ids(self, tokens):
|
33 |
unk_id = self.vocab_dict.get(self.unk_token)
|
34 |
return [self.vocab_dict[token] if token in self.vocab_dict else unk_id for token in tokens]
|
35 |
|
36 |
-
def convert_ids_to_tokens(self, ids):
|
37 |
id_to_token = {idx: token for token, idx in self.vocab_dict.items()}
|
38 |
return [id_to_token.get(id_, self.unk_token) for id_ in ids]
|
39 |
|
@@ -58,21 +68,6 @@ class KmerTokenizer(PreTrainedTokenizer):
|
|
58 |
"k": self.k,
|
59 |
"stride": self.stride
|
60 |
},
|
61 |
-
# "post_processor": {
|
62 |
-
# "type": "TemplateProcessing",
|
63 |
-
# "single": [
|
64 |
-
# {"SpecialToken": {"id": self.cls_token, "type_id": 0}},
|
65 |
-
# {"Sequence": {"id": "A", "type_id": 0}},
|
66 |
-
# {"SpecialToken": {"id": self.sep_token, "type_id": 0}}
|
67 |
-
# ],
|
68 |
-
# "pair": [
|
69 |
-
# {"SpecialToken": {"id": self.cls_token, "type_id": 0}},
|
70 |
-
# {"Sequence": {"id": "A", "type_id": 0}},
|
71 |
-
# {"SpecialToken": {"id": self.sep_token, "type_id": 0}},
|
72 |
-
# {"Sequence": {"id": "B", "type_id": 1}},
|
73 |
-
# {"SpecialToken": {"id": self.sep_token, "type_id": 1}}
|
74 |
-
# ]
|
75 |
-
# }
|
76 |
"model": {
|
77 |
"type": "k-mer",
|
78 |
"k": self.k,
|
|
|
1 |
from transformers import PreTrainedTokenizer
|
2 |
from huggingface_hub import hf_hub_download
|
3 |
+
import torch
|
4 |
import json
|
5 |
import os
|
6 |
from itertools import product
|
|
|
26 |
self.unk_token = "[UNK]"
|
27 |
# self.pad_token = "[PAD]"
|
28 |
|
29 |
+
def _tokenize(self, text, **kwargs):
|
30 |
splits = [text[i:i + self.k] for i in range(0, len(text) - self.k + 1, self.stride)]
|
31 |
+
if kwargs.get('return_tensors') == 'pt':
|
32 |
+
return torch.tensor(splits)
|
33 |
+
return splits
|
34 |
+
|
35 |
+
def _encode(self, text, **kwargs):
|
36 |
+
tokens = self._tokenize(text, **kwargs)
|
37 |
+
token_ids = self.convert_tokens_to_ids(tokens)
|
38 |
+
if kwargs.get('return_tensors') == 'pt':
|
39 |
+
return torch.tensor(token_ids)
|
40 |
+
return token_ids
|
41 |
|
42 |
def convert_tokens_to_ids(self, tokens):
|
43 |
unk_id = self.vocab_dict.get(self.unk_token)
|
44 |
return [self.vocab_dict[token] if token in self.vocab_dict else unk_id for token in tokens]
|
45 |
|
46 |
+
def convert_ids_to_tokens(self, ids, **kwargs):
|
47 |
id_to_token = {idx: token for token, idx in self.vocab_dict.items()}
|
48 |
return [id_to_token.get(id_, self.unk_token) for id_ in ids]
|
49 |
|
|
|
68 |
"k": self.k,
|
69 |
"stride": self.stride
|
70 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
"model": {
|
72 |
"type": "k-mer",
|
73 |
"k": self.k,
|