model: d_model: 768 n_layer: 6 d_inner: ${eval:4 * ${.d_model}} vocab_size: ${tokenizer.vocab_size} resid_dropout: 0.0 embed_dropout: 0.1 residual_in_fp32: true pad_vocab_size_multiple: 8 mamba_ver: mamba2 layer: d_model: ${model.d_model} d_state: 64 d_conv: 4 expand: 2 headdim: 64 n_classes: null dataset: __train_len: ${div_up:1_000_000_000, ${.max_len}} __l_max: ${.max_len} randomize_offset: true input_path: ./data/ max_len: 660 use_padding: true add_eos: false rc_aug: true phase: pretrain classify_level: null num_workers: 0 batch_size: 16 pretrain_method: ntp mask_ratio: 0.5 tokenizer: use_unk_token: true k_mer: 6 padding: true padding_side: left name: k-mer stride: ${.k_mer} max_len: ${dataset.max_len} vocab_size: ${eval:4 ** ${.k_mer} + 3} trainer: accelerator: gpu devices: -1 num_nodes: 1 max_epochs: 50 gradient_clip_val: 1.0 fast_dev_run: false strategy: ddp train: logger: wandb run_name: null gpu_mem: ${eval:"round(float(__import__('subprocess').check_output('nvidia-smi -i 0 --query-gpu=memory.total --format=csv,noheader,nounits', shell=True).strip().decode()) / 1000)"} seed: 2222 global_batch_size: 256 ckpt: null ema: 0.0 test: true interval: step monitor: val/loss_epoch mode: min validate_at_start: false pretrained_model_strict_load: false pretrained_model_path: null scheduler: t_in_epochs: false t_initial: ${eval:${div_up:${dataset.__train_len}, ${train.global_batch_size}} * ${trainer.max_epochs}} warmup_lr_init: 1.0e-06 warmup_t: ${eval:${div_up:${dataset.__train_len}, ${train.global_batch_size}} * ${trainer.max_epochs} * 0.01} lr_min: ${eval:0.1 * ${optimizer.lr}} optimizer: lr: 0.0008 weight_decay: 0.1 betas: - 0.9 - 0.999 model_checkpoint: monitor: ${train.monitor} mode: ${train.mode} save_top_k: 1 save_last: true dirpath: checkpoints/ filename: barcode-mamba-${dataset.phase}-{epoch:02d} save_on_train_epoch_end: true auto_insert_metric_name: true verbose: true debug: false