File size: 15,053 Bytes
dc7407d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 |
import os
import numpy as np
from PIL import Image
from torch.utils import data
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as models
import torchvision.transforms as transforms
from tqdm import tqdm
## ------------------- label conversion tools ------------------ ##
def labels2cat(label_encoder, list):
return label_encoder.transform(list)
def labels2onehot(OneHotEncoder, label_encoder, list):
return OneHotEncoder.transform(label_encoder.transform(list).reshape(-1, 1)).toarray()
def onehot2labels(label_encoder, y_onehot):
return label_encoder.inverse_transform(np.where(y_onehot == 1)[1]).tolist()
def cat2labels(label_encoder, y_cat):
return label_encoder.inverse_transform(y_cat).tolist()
## ---------------------- Dataloaders ---------------------- ##
# for 3DCNN
class Dataset_3DCNN(data.Dataset):
"Characterizes a dataset for PyTorch"
def __init__(self, data_path, folders, labels, frames, transform=None):
"Initialization"
self.data_path = data_path
self.labels = labels
self.folders = folders
self.transform = transform
self.frames = frames
def __len__(self):
"Denotes the total number of samples"
return len(self.folders)
def read_images(self, path, selected_folder, use_transform):
X = []
for i in self.frames:
image = Image.open(os.path.join(path, selected_folder, 'frame_{:01d}.jpg'.format(i))).convert('L')
if use_transform is not None:
image = use_transform(image)
X.append(image.squeeze_(0))
X = torch.stack(X, dim=0)
return X
def __getitem__(self, index):
"Generates one sample of data"
# Select sample
folder = self.folders[index]
# Load data
X = self.read_images(self.data_path, folder, self.transform).unsqueeze_(0) # (input) spatial images
y = torch.LongTensor([self.labels[index]]) # (labels) LongTensor are for int64 instead of FloatTensor
# print(X.shape)
return X, y
# for CRNN
class Dataset_CRNN(data.Dataset):
"Characterizes a dataset for PyTorch"
def __init__(self, data_path, folders, labels, frames, transform=None):
"Initialization"
self.data_path = data_path
self.labels = labels
self.folders = folders
self.transform = transform
self.frames = frames
def __len__(self):
"Denotes the total number of samples"
return len(self.folders)
def read_images(self, path, selected_folder, use_transform):
X = []
for i in self.frames:
image = Image.open(os.path.join(path, selected_folder, 'frame{:01d}.jpg'.format(i)))
if use_transform is not None:
image = use_transform(image)
X.append(image)
X = torch.stack(X, dim=0)
return X
def __getitem__(self, index):
"Generates one sample of data"
# Select sample
folder = self.folders[index]
# Load data
X = self.read_images(self.data_path, folder, self.transform) # (input) spatial images
y = torch.LongTensor([self.labels[index]]) # (labels) LongTensor are for int64 instead of FloatTensor
# print(X.shape)
return X, y
## ---------------------- end of Dataloaders ---------------------- ##
## -------------------- (reload) model prediction ---------------------- ##
def Conv3d_final_prediction(model, device, loader):
model.eval()
all_y_pred = []
with torch.no_grad():
for batch_idx, (X, y) in enumerate(tqdm(loader)):
# distribute data to device
X = X.to(device)
output = model(X)
y_pred = output.max(1, keepdim=True)[1] # location of max log-probability as prediction
all_y_pred.append(y_pred.data.squeeze().numpy().tolist())
return all_y_pred
def CRNN_final_prediction(model, device, loader):
cnn_encoder, rnn_decoder = model
cnn_encoder.eval()
rnn_decoder.eval()
all_y_pred = []
with torch.no_grad():
for batch_idx, (X, y) in enumerate(tqdm(loader)):
# distribute data to device
X = X.to(device)
output = rnn_decoder(cnn_encoder(X))
y_pred = output.max(1, keepdim=True)[1] # location of max log-probability as prediction
all_y_pred.extend(y_pred.cpu().data.squeeze().numpy().tolist())
return all_y_pred
## -------------------- end of model prediction ---------------------- ##
## ------------------------ 3D CNN module ---------------------- ##
def conv3D_output_size(img_size, padding, kernel_size, stride):
# compute output shape of conv3D
outshape = (np.floor((img_size[0] + 2 * padding[0] - (kernel_size[0] - 1) - 1) / stride[0] + 1).astype(int),
np.floor((img_size[1] + 2 * padding[1] - (kernel_size[1] - 1) - 1) / stride[1] + 1).astype(int),
np.floor((img_size[2] + 2 * padding[2] - (kernel_size[2] - 1) - 1) / stride[2] + 1).astype(int))
return outshape
class CNN3D(nn.Module):
def __init__(self, t_dim=120, img_x=90, img_y=120, drop_p=0.2, fc_hidden1=256, fc_hidden2=128, num_classes=50):
super(CNN3D, self).__init__()
# set video dimension
self.t_dim = t_dim
self.img_x = img_x
self.img_y = img_y
# fully connected layer hidden nodes
self.fc_hidden1, self.fc_hidden2 = fc_hidden1, fc_hidden2
self.drop_p = drop_p
self.num_classes = num_classes
self.ch1, self.ch2 = 32, 48
self.k1, self.k2 = (5, 5, 5), (3, 3, 3) # 3d kernel size
self.s1, self.s2 = (2, 2, 2), (2, 2, 2) # 3d strides
self.pd1, self.pd2 = (0, 0, 0), (0, 0, 0) # 3d padding
# compute conv1 & conv2 output shape
self.conv1_outshape = conv3D_output_size((self.t_dim, self.img_x, self.img_y), self.pd1, self.k1, self.s1)
self.conv2_outshape = conv3D_output_size(self.conv1_outshape, self.pd2, self.k2, self.s2)
self.conv1 = nn.Conv3d(in_channels=1, out_channels=self.ch1, kernel_size=self.k1, stride=self.s1,
padding=self.pd1)
self.bn1 = nn.BatchNorm3d(self.ch1)
self.conv2 = nn.Conv3d(in_channels=self.ch1, out_channels=self.ch2, kernel_size=self.k2, stride=self.s2,
padding=self.pd2)
self.bn2 = nn.BatchNorm3d(self.ch2)
self.relu = nn.ReLU(inplace=True)
self.drop = nn.Dropout3d(self.drop_p)
self.pool = nn.MaxPool3d(2)
self.fc1 = nn.Linear(self.ch2 * self.conv2_outshape[0] * self.conv2_outshape[1] * self.conv2_outshape[2],
self.fc_hidden1) # fully connected hidden layer
self.fc2 = nn.Linear(self.fc_hidden1, self.fc_hidden2)
self.fc3 = nn.Linear(self.fc_hidden2, self.num_classes) # fully connected layer, output = multi-classes
def forward(self, x_3d):
# Conv 1
x = self.conv1(x_3d)
x = self.bn1(x)
x = self.relu(x)
x = self.drop(x)
# Conv 2
x = self.conv2(x)
x = self.bn2(x)
x = self.relu(x)
x = self.drop(x)
# FC 1 and 2
x = x.view(x.size(0), -1)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = F.dropout(x, p=self.drop_p, training=self.training)
x = self.fc3(x)
return x
## --------------------- end of 3D CNN module ---------------- ##
## ------------------------ CRNN module ---------------------- ##
def conv2D_output_size(img_size, padding, kernel_size, stride):
# compute output shape of conv2D
outshape = (np.floor((img_size[0] + 2 * padding[0] - (kernel_size[0] - 1) - 1) / stride[0] + 1).astype(int),
np.floor((img_size[1] + 2 * padding[1] - (kernel_size[1] - 1) - 1) / stride[1] + 1).astype(int))
return outshape
# 2D CNN encoder train from scratch (no transfer learning)
class EncoderCNN(nn.Module):
def __init__(self, img_x=90, img_y=120, fc_hidden1=512, fc_hidden2=512, drop_p=0.3, CNN_embed_dim=300):
super(EncoderCNN, self).__init__()
self.img_x = img_x
self.img_y = img_y
self.CNN_embed_dim = CNN_embed_dim
# CNN architechtures
self.ch1, self.ch2, self.ch3, self.ch4 = 32, 64, 128, 256
self.k1, self.k2, self.k3, self.k4 = (5, 5), (3, 3), (3, 3), (3, 3) # 2d kernal size
self.s1, self.s2, self.s3, self.s4 = (2, 2), (2, 2), (2, 2), (2, 2) # 2d strides
self.pd1, self.pd2, self.pd3, self.pd4 = (0, 0), (0, 0), (0, 0), (0, 0) # 2d padding
# conv2D output shapes
self.conv1_outshape = conv2D_output_size((self.img_x, self.img_y), self.pd1, self.k1, self.s1) # Conv1 output shape
self.conv2_outshape = conv2D_output_size(self.conv1_outshape, self.pd2, self.k2, self.s2)
self.conv3_outshape = conv2D_output_size(self.conv2_outshape, self.pd3, self.k3, self.s3)
self.conv4_outshape = conv2D_output_size(self.conv3_outshape, self.pd4, self.k4, self.s4)
# fully connected layer hidden nodes
self.fc_hidden1, self.fc_hidden2 = fc_hidden1, fc_hidden2
self.drop_p = drop_p
self.conv1 = nn.Sequential(
nn.Conv2d(in_channels=3, out_channels=self.ch1, kernel_size=self.k1, stride=self.s1, padding=self.pd1),
nn.BatchNorm2d(self.ch1, momentum=0.01),
nn.ReLU(inplace=True),
# nn.MaxPool2d(kernel_size=2),
)
self.conv2 = nn.Sequential(
nn.Conv2d(in_channels=self.ch1, out_channels=self.ch2, kernel_size=self.k2, stride=self.s2, padding=self.pd2),
nn.BatchNorm2d(self.ch2, momentum=0.01),
nn.ReLU(inplace=True),
# nn.MaxPool2d(kernel_size=2),
)
self.conv3 = nn.Sequential(
nn.Conv2d(in_channels=self.ch2, out_channels=self.ch3, kernel_size=self.k3, stride=self.s3, padding=self.pd3),
nn.BatchNorm2d(self.ch3, momentum=0.01),
nn.ReLU(inplace=True),
# nn.MaxPool2d(kernel_size=2),
)
self.conv4 = nn.Sequential(
nn.Conv2d(in_channels=self.ch3, out_channels=self.ch4, kernel_size=self.k4, stride=self.s4, padding=self.pd4),
nn.BatchNorm2d(self.ch4, momentum=0.01),
nn.ReLU(inplace=True),
# nn.MaxPool2d(kernel_size=2),
)
self.drop = nn.Dropout2d(self.drop_p)
self.pool = nn.MaxPool2d(2)
self.fc1 = nn.Linear(self.ch4 * self.conv4_outshape[0] * self.conv4_outshape[1], self.fc_hidden1) # fully connected layer, output k classes
self.fc2 = nn.Linear(self.fc_hidden1, self.fc_hidden2)
self.fc3 = nn.Linear(self.fc_hidden2, self.CNN_embed_dim) # output = CNN embedding latent variables
def forward(self, x_3d):
cnn_embed_seq = []
for t in range(x_3d.size(1)):
# CNNs
x = self.conv1(x_3d[:, t, :, :, :])
x = self.conv2(x)
x = self.conv3(x)
x = self.conv4(x)
x = x.view(x.size(0), -1) # flatten the output of conv
# FC layers
x = F.relu(self.fc1(x))
# x = F.dropout(x, p=self.drop_p, training=self.training)
x = F.relu(self.fc2(x))
x = F.dropout(x, p=self.drop_p, training=self.training)
x = self.fc3(x)
cnn_embed_seq.append(x)
# swap time and sample dim such that (sample dim, time dim, CNN latent dim)
cnn_embed_seq = torch.stack(cnn_embed_seq, dim=0).transpose_(0, 1)
# cnn_embed_seq: shape=(batch, time_step, input_size)
return cnn_embed_seq
# 2D CNN encoder using ResNet-152 pretrained
class ResCNNEncoder(nn.Module):
def __init__(self, fc_hidden1=512, fc_hidden2=512, drop_p=0.3, CNN_embed_dim=300):
"""Load the pretrained ResNet-152 and replace top fc layer."""
super(ResCNNEncoder, self).__init__()
self.fc_hidden1, self.fc_hidden2 = fc_hidden1, fc_hidden2
self.drop_p = drop_p
resnet = models.resnet152(pretrained=True)
modules = list(resnet.children())[:-1] # delete the last fc layer.
self.resnet = nn.Sequential(*modules)
self.fc1 = nn.Linear(resnet.fc.in_features, fc_hidden1)
self.bn1 = nn.BatchNorm1d(fc_hidden1, momentum=0.01)
self.fc2 = nn.Linear(fc_hidden1, fc_hidden2)
self.bn2 = nn.BatchNorm1d(fc_hidden2, momentum=0.01)
self.fc3 = nn.Linear(fc_hidden2, CNN_embed_dim)
def forward(self, x_3d):
cnn_embed_seq = []
for t in range(x_3d.size(1)):
# ResNet CNNFcnn
with torch.no_grad():
x = self.resnet(x_3d[:, t, :, :, :]) # ResNet
x = x.view(x.size(0), -1) # flatten output of conv
# FC layers
x = self.bn1(self.fc1(x))
x = F.relu(x)
x = self.bn2(self.fc2(x))
x = F.relu(x)
x = F.dropout(x, p=self.drop_p, training=self.training)
x = self.fc3(x)
cnn_embed_seq.append(x)
# swap time and sample dim such that (sample dim, time dim, CNN latent dim)
cnn_embed_seq = torch.stack(cnn_embed_seq, dim=0).transpose_(0, 1)
# cnn_embed_seq: shape=(batch, time_step, input_size)
return cnn_embed_seq
class DecoderRNN(nn.Module):
def __init__(self, CNN_embed_dim=300, h_RNN_layers=3, h_RNN=256, h_FC_dim=128, drop_p=0.3, num_classes=50):
super(DecoderRNN, self).__init__()
self.RNN_input_size = CNN_embed_dim
self.h_RNN_layers = h_RNN_layers # RNN hidden layers
self.h_RNN = h_RNN # RNN hidden nodes
self.h_FC_dim = h_FC_dim
self.drop_p = drop_p
self.num_classes = num_classes
self.LSTM = nn.LSTM(
input_size=self.RNN_input_size,
hidden_size=self.h_RNN,
num_layers=h_RNN_layers,
batch_first=True, # input & output will has batch size as 1s dimension. e.g. (batch, time_step, input_size)
)
self.fc1 = nn.Linear(self.h_RNN, self.h_FC_dim)
self.fc2 = nn.Linear(self.h_FC_dim, self.num_classes)
def forward(self, x_RNN):
self.LSTM.flatten_parameters()
RNN_out, (h_n, h_c) = self.LSTM(x_RNN, None)
""" h_n shape (n_layers, batch, hidden_size), h_c shape (n_layers, batch, hidden_size) """
""" None represents zero initial hidden state. RNN_out has shape=(batch, time_step, output_size) """
# FC layers
x = self.fc1(RNN_out[:, -1, :]) # choose RNN_out at the last time step
x = F.relu(x)
x = F.dropout(x, p=self.drop_p, training=self.training)
x = self.fc2(x)
return x
## ---------------------- end of CRNN module ---------------------- ##
|